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Abstract

Basso continuo is the baroque accompaniment practice of improvising harmony
and upper voices upon a notated bass line. The performance — “realization” — of
continuo is not just historical heritage, but a living cornerstone of the Historically
Informed Performance movement. However, in music information retrieval it has
received little attention and its “living” side has been overlooked entirely. We
present a pilot dataset consisting of 6 hours of basso continuo performances in
175 MIDI recordings, which is the first of its kind. To connect contemporary
practice to musicological knowledge, and to enable comparing the performances
themselves, one must align performances to the notated bass lines. We analyze
the challenges that continuo alignment presents, and evaluate baseline two-step
alignment using state-of-the-art variants of hidden Markov models and dynamic
time warping. Whereas the bass line is aligned well, assigning individual notes of
the realization to the score will require further attention.

1 Introduction

Basso continuo is a baroque accompaniment practice in which a player performs a notated bass line
and improvises upper voices upon it, with the bass line defining the harmonic constraints within
which the accompaniment must fit. Often, these constraints are disambiguated with numeric and other
figures, leading to the associated term “figured bass”. This process, as well as the resulting musical
part, is called continuo realization (Williams and Ledbetter, 2001). The basic realization consists of
three voices above the bass line, but the artist is free to choose the textures of the accompaniment, as
long as they adhere to harmonic constraints implied by the bass line. An excerpt is shown in Figure 1.
Historical styles of basso continuo performance have been studied extensively by musicologists and
performers themselves, but basso continuo is a living practice as much as it is a heritage of the past
Mortensen (1996): “resurrecting” the skill of continuo has been one essential part of the Historically
Informed Performance (HIP) movement (Christensen, 2002).

Continuo performers also study historical ways of basso continuo playing and develop their own
personal understanding of the historical styles, which they apply on stage. However, their practices
are mostly left unresearched: we do not really know what continuo players today are playing. We
believe this is mostly due to the fact that the improvisatory nature, and thus the lack of musical
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Figure 1: Different realizations of the same basso continuo line, visualised as music notation. Note
that while music notation is the default way of communicating the tonal content of realizations
visually, it leaves out many important properties of performance — microtiming, arpeggiations,
articulation, etc.

notation. The only empirical observations one can possibly have is from performance: there is no
such thing as a fully notated work of continuo.? This makes continuo performance less accessible
to usual methods of musicological study. But, not including the current artists in continuo research
misses the majority of what continuo is today: a practice.

We propose that the digital domain is inherently well-suited to the study of continuo. Because
the bulk of the performer’s task is to improvise tonal content, continuo practice is observable in
the symbolic domain with MIDI technology, including nuance beyond what written scores can
capture. Computational — probabilistic — models are then an appropriate approach to describe
and abstract these practices (Paiement et al., 2009; Spiliopoulou and Storkey, 2011), corresponding
to their ephemeral and variable nature. However, while methods exist that could process continuo
performance and enable its study, no such recordings in fact exist.

We collect the first (pilot) dataset of MIDI recordings of continuo realizations, performed by 7
professional harpsichord? players and students. These 6 hours of recordings present the first empirical,
first-hand evidence of how basso continuo is performed at the symbolic music level — that is, with an
exact record of the tonal material.

However, to answer the question “How do we play continuo today?” and to make the dataset practical
and actionable for further research, the recorded realizations must first be aligned to their scores —
the notated bass lines. Continuo practice is defined in terms of the bass lines: baroque treatises write
instructions of the type “If the bass rises by a step, these are the valid options for accompaniment:
...”,* and continuo players internalize these patterns and execute them for their specific bass lines. The
scores are thus the fundamental link between contemporary continuo practice and its historical layer.
Performance-to-score alignment is a long-standing task for MIR (Orio et al., 2003; Cancino-Chacén
et al., 2018; Peter et al., 2023), but so far this task has primarily focused on later Western classical
music from the common practice period, featuring fully notated scores that contain the exact notes
used in performance, possibly with a few added ornaments and/or outright mistakes (Nakamura et al.,
2017; Peter and Widmer, 2024). Continuo performance by definition includes more than is in the
score: most of the notes played are added by the performer, sometimes in a simpler and sometimes in
a more elaborate manner (see Figure 1). Continuo therefore presents a specific alignment challenge,
between traditional performance-to-score alignment and estimating chord labels.

There are three main contributions of the paper:

With the few exceptions in historical sources, such as Bach’s realization for one Albinoni’s violin sonata, or
Tonelli’s realizations for Corelli’s violin sonatas, well known and studied in the continuo performance community.
However, while these communicate the tonal content of the realizations, still they do not capture performance
fully: how were Tonelli’s rich chords arpeggiated?

3While we acknowledge the importance of non-keyboard continuo harmonic instruments such as lutes, bass
viols, and more, collecting MIDI data for other than keyboard continuo instruments is impractical, as it would
require highly specialized equipment.

“This mostly concerns the Italian and South German traditions: for example Gasparini’s L’Armonico Pratico
al Cimbalo or the Fundamenta partiturae in compendio dato of Matthias Gugl.



* We collect the first symbolic dataset of continuo realizations (Section 3).

* We define the task(s) of continuo alignment and provide manual ground truth for a part of
the data (Section 4). The data and alignments are made available as the Aligned Continuo
Realization Dataset (ACoRD)°.

* We adapt existing performance-to-score alignment methods based on hidden Markov models
(HMMs) and dynamic time warping (DTW) for continuo alignment and provide first strong
baselines for the task (Sections 5 & 6). The code has been published as a repository®.

2 Related Work

2.1 Basso Continuo

Basso continuo musicological research has for several decades focused on analyzing historical textual
sources, mostly treatises by 17th and 18th century composers and theoreticians, and a rather small
amount of existing notated historical basso continuo realizations. The work of Christensen (2002)
provides a general overview of the basics of historical basso continuo playing. Giulia Nuti (2017)
analyzes the specifics of the Italian basso continuo style in great detail. Mortensen (1996) argues
that basso continuo playing is even nowadays a living performance practice. He writes that the
contemporary playing differs from its historic counterpart, but does not provide a more detailed
analysis of how basso continuo playing is practiced in our times.

Computational research related to basso continuo has focused primarily on the generation of basso
continuo realization or numerical annotations from musical scores using mostly algorithmic proce-
dures (Niitsuma and Saito, 2007; Niitsuma et al., 2011), decision trees (Wead and Knopke, 2007) and
marginally also machine learning (Ju et al., 2020).This research area aligns with the broader field of
Al music generation, where systems based on convolutional neural networks (Huang et al., 2019)
and transformers (Thickstun et al., 2023) have demonstrated state-of-the-art performance. However,
none of the existing systems specifically address the challenge of human-created performances of
basso continuo improvisations. These systems cover only a predefined small portion of the possible
improvisations. Processing an arbitrary keyboard player’s performance, including possible mistakes,
and providing useful feedback to the artist requires a model that covers a much greater proportion of
the space of possible accompaniments.

No dataset of continuo realizations is publicly available. The harmonic language of basso continuo is
well-defined and rooted in the Western classical music tradition (Christensen, 2002), and datasets exist
that do exemplify the style of baroque composition and thus certain ideals of continuo realizations,
such as Bach chorales (Conklin, 1966) or Giant-MIDI dataset (Kong et al., 2020), but these fail to
capture the inherent variability of an improvised accompaniment.

2.2 Performance-to-Score Alignment

Performance-to-score alignment refers to aligning a performance with its corresponding musical
score. Introduced by Dannenberg (1984) and Vercoe (1984), it has since become a foundational task
in MIR. Music alignment is essential for quantitative performance analysis (Cancino-Chacén et al.,
2018) and is the basis of many applications, including automatic accompaniment (Cancino-Chacén
et al., 2023; Raphael and Gu, 2009), automatic page turning (Arzt et al., 2008; Henkel et al., 2021)
and multimodal visualizations (Otsuka et al., 2011; Maezawa, 2024 Lartillot et al., 2020).

In the symbolic domain, performance-to-score alignment means matching notes in a symbolic
performance (e.g., MIDI) to those in a symbolic score (e.g., MusicXML/MEI). Note-level symbolic
alignment algorithms tend to be very accurate if the score and performance correspond well (Peter
et al., 2023; Peter, 2023; Nakamura et al., 2017), as is the case in Western music of the common
practice period. In note-wise symbolic alignment, a performed note is typically matched to a single
score note, or marked as an insertion, or as part of an ornament (e.g., a trill) (Peter et al., 2023;
Foscarin et al., 2022). A note in the score that is not performed is marked as a deletion.

Music alignment algorithms generally fall into two categories: probabilistic models and dynamic
programming. Probabilistic state-space models treat alignment as latent state inference, where

Shttp://hdl.handle.net/11234/1-5963
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Table 1: Information on scores with basso continuo in the ACoRD dataset

Piece ID Name Composer Key Instrumentation # of Basso Continuo Notes
001 Pour la Bergere Lisete J.-F. Dandrieu F Major  voice & basso continuo 86
002 Partimento Book 2 No. 5 F. Fenaroli B Major  basso continuo 116
003 Neues G. Ph. Telemann G Major voice & basso continuo 82
004 Adagio from Sonata in D Minor  B. Marcello D Minor recorder & basso continuo 107
005 Partimento Book 2 No. 6 F. Fenaroli B Minor  basso continuo 135

score positions are hidden variables (Cano et al., 1999; Cont, 2008; Duan and Pardo, 2011). The
most common approach for symbolic alignment involves variants of HMMs, where the hidden
states represent time positions in the score and the observations are the notes and onset times in
the performance (Nakamura et al., 2015; Raphael and Gu, 2009; Cancino-Chacén et al., 2023).
Dynamic programming methods, especially DTW, align sequences by minimizing cumulative cost
and, while traditionally used for audio-based alignment, have recently been adapted for symbolic
alignment (Peter et al., 2023; Peter, 2023).

3 ACoRD: a Pilot Continuo Realization Dataset

The Aligned Continuo Realization Dataset (ACoRD) consists of 175 pilot MIDI recordings of
continuo realizations: 3 from musical pieces for a solo voice or instrument and basso continuo from
the 18th century, and two partimenti (Williams and Cafiero, 2001) of Fedele Fenaroli, which are
pedagogical tools for students of continuo, where they improvise realizations with no solo voices
to accompany. All pieces were performed by 7 participants at different levels of proficiency: 4
professionals and 3 intermediate to advanced students of continuo.” Each participant recorded each
piece 5 times, to capture within-artist variability in continuo realization. Two participants recorded
their performances on Roland A-37 and the rest on M-Audio Keystation 61 MK3. The sound came
from a sampled Christian Zell 1737 harpsichord running in the GrandOrgue open-source virtual
simulator.® The recordings were made in Ardour,” an open-source digital audio workstation.

The overall playing time of the dataset is just above 6 hours. A total of 66,967 notes in the
performances is recorded, of which 28 % are notes from the score. Table 1 shows basic information
about the recorded musical pieces.

The recordings in the dataset are not meant to represent textbook continuo realizations, but real-
world performances that contain accidental flaws and intentional variations that arise as keyboard
players realize continuo. Observed discrepancies between an ideally correct performance and the real
performance include:

* Overly repeated or, on the other hand, skipped bass notes;

¢ Ornaments such as mordent or trill, or even added notes to the bass line;

* Sudden interruption and continuation at the same place after a brief break;
* Substitution errors in the bass part;

* Intentional transposition of the whole piece by one performer.

Further challenges are associated with inherent properties of continuo performance, such as overlegato
articulation on the harpsichord, arpeggiation, or deliberate rhythmic instabilities. Some of these
phenomena are illustrated in Figure 2.

4 Aligning Continuo: Definitions and Ground Truth

We have established in the Introduction that in order to interpret and further process the recorded
continuo, we must align the realization to the score. The description of the data in Section 3 and
Figure 2 indicated that this task is not trivial. What, however, does it mean to align continuo?

"One studies continuo typically after already having substantial expertise on the piano, and after some
familiarisation with harpsichord. “Students” in this context are aged 18-25, on the threshold of performing
professionally; and are not to be considered beginners.

$https://github.com/GrandOrgue/grandorgue

*https://ardour.org
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Each note in the score implies harmonic constraints valid for its duration. The choice of texture,
including ornamental notes that are allowed outside of the harmonic constraint, is left to the performer.
The fundamental relationship between the score and the performance is that each note in the realization
relates to a note in the score, and the task of full realization alignment is to find this assignment.

As opposed to aligning fully notated scores and performances, multiple performed notes are expected
to align to each score note,without necessarily matching exactly any of their individual attributes —
pitch or the implied harmonic constraint, or onset and offset. The characteristic features of basso
continuo performance therefore implies a paradigm change compared to the full-score alignment
task.

Fortunately, because the notated bass line itself must by definition also be part of the continuo
realization, we can define a sub-task: aligning just the subset of performance notes that corresponds
to the score notes. This bass line alignment can be defined as a one-to-one matching of notes with
exactly matching attributes. For this symbolic-domain methods are well-known, and having such an
alignment could then reduce the overarching alignment task to just matching all notes with onsets in
between two adjacent aligned bass notes.

4.1 Manual Ground Truth Alignment Data

Because both alignment steps (bass line alignment and full alignment) are far from trivial, one must
measure how well methods of performance-to-score alignment perform. Thus, manual ground truth
is necessary.

In order to obtain ground truth data that can be used for evaluating both alignment steps, we have
manually annotated 35 bass line alignments (one randomly chosen take of each piece of each player,
with 3,593 matched score notes in total), and 15 full realization alignments (3 takes of each of the 5
pieces, with the 7 players represented as equally as possible; 6,741 matches in total). The manual
alignment of full realizations took roughly one hour per file. All manual annotations were performed
using the online tool Parangonada (Peter et al., 2023) and were supervised by one of the authors, a
professional harpsichord player.

The bass alignment annotations were created considering a one-to-one mapping between the score
notes and the performance bass notes, i.e., every score note is aligned to a maximum of one perfor-
mance bass note. The realization alignment annotations were created considering a many-to-many
mapping between the score notes and the performance notes. This will be discussed further in Section
4.2. For these annotations, we have chosen to manually correct some of the files that were already
automatically aligned using the DualDTWNoteMatcher (Peter, 2023), an existing state-of-the-art
offline algorithm, which will be described in Section 5.
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Figure 2: Illustrating the relationship between a continuo realization (top) and the notated bass line
(bottom). Color codes corresponding segments of the continuo part.
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Figure 3: Illustration of a case study where a performance bass note (circled in green) corresponding
to a score note (circled in blue) transforms into a realization note for the following performance bass
note (circled in red) corresponding to the subsequent score note (circled in yellow).

4.2 Challenges of Continuo Alignment

The manual alignment annotation process was divided into two steps: performance bass note align-
ment annotation, and performance realization notes alignment annotation. A one-to-one mapping
was chosen for the process of manually annotating the alignment between the basso continuo score
and the performance’s bass line. This decision follows the reasoning that the score notes follow a
sequence that must be respected in the performance (Christensen, 2002), and therefore, there can
only be one corresponding performance bass note for each score note. Any other notes that occur in
the performance apart from the performance bass notes are thus considered the realizations of the
bass note.

A many-to-many mapping was chosen for the process of annotating the alignment between the score
notes and the performance realization notes (including the performance bass notes). This was done
for the following reasons:

* To allow for the performance bass note as well as the other realization notes corresponding
to that bass note to be aligned to one score note (many-to-one).

* To allow for cases where a realization note corresponding to a performance bass note
continues to stretch in duration beyond the duration of the performance bass note and across
the duration of the following performance bass note(s). In this case such a realization note
is aligned to all the score notes corresponding to the performance bass notes that it has
stretched over (one-to-many).

* To allow for situations where a performance bass note itself stretches in duration over the
length of the next performance bass note(s), and therefore transforms into a realization of
the following bass note(s). As can be seen in Figure 3, in such cases, the performance bass
note (circled in green) is aligned with its own score note (circled in blue), and it is also
aligned with the next score note (circled in yellow); i.e. the score note corresponding to the
next performance bass note (circled in red).
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Figure 4: The modular alignment system pipeline. The system accepts scores in MusicXML format
and performances as MIDI file.

S Baseline Alignment System

The baseline alignment system over ACoRD, shown on Figure 4, enables operations with several
preprocessing and alignment methods on the data. The system accepts MIDI files for performances,
and MusicXML files for scores. These files are parsed using the partitura library (Cancino-Chacén
et al., 2022). In case of multi-part scores (see column “Instrumentation” in Table 1), only the bass
continuo line is extracted. Each performance and score pair forms an input to the alignment system.

This system operates in two steps. The first step is bass line alignment. We implement two optional
continuo-specific preprocessing methods, and four state-of-the-art alignment systems are available.

These bass alignments are used in the second step — full realization alignment. For this step only a
simple position-based alignment method is currently available, because it involves the many-to-many
alignment paradigm.

5.1 Preprocessing

Score preprocessing consists only of basso continuo part selection from scores with multiple parts in
them. The scores in our dataset are made so that this part is always the bottom one in a system, as is
usually the case in standard scores of baroque music (with the accompanied solo lines in the upper
parts, except for partimenti).

Performance preprocessing for bass line alignment aims at reducing the disproportionate number of
insertions in the performance by guessing which notes can never be validly aligned with the score.
We implement two methods which essentially preclassify anything that is “too high” as an insertion
with respect to the bass line:

1. Trimming, which cuts out all performance notes whose pitch is higher than the highest note
in the basso continuo score.

2. An inverted skyline algorithm, which retains only notes which are the lowest performance
note at at least some point of their duration. This preprocessing method is based on
the skyline algorithm for symbolic melody identification (Uitdenbogerd and Zobel, 1999;
Simonetta et al., 2019).

We also work with raw encoded performances, to check what the influence of preprocessing is
across different alignment methods. In any case no performance notes can be discarded for the full
realization step.



5.2 Bass Line Alignment

We use four state-of-the-art alignment methods used for performance-to-score alignment, based
mostly on HMMs and DTW. All the alignment methods used are publicly available as either as
Python packages or C++ source code. We use the following systems:

* DualDTWNoteMatcher from the parangonar library (Peter, 2023)

* TheGlueNoteMatcher from the parangonar library (Peter and Widmer, 2024)
* Pitch-1I0I HMM from the matchmaker library (Park et al., 2024)

* Merged-output HMM of Nakamura et al. (2017).

These systems have been used to align performances of full (piano) scores and, therefore, have strong
constraints on pitch differences between the performance and the score. Therefore, they are not suited
for the full realization alignment, but they are useful to align the realization bass line with the score
(taken into account that the bass line should be present in the realization as it is written in the score at
almost all times).

5.2.1 DualDTWNoteMatcher

A state-of-the-art offline alignment algorithm based on DTW (described in Peter (2023)) computes
a forward and a backward DTW warping path based only on pitch information of performance
and score notes. The system uses a pitch-based heuristics in cases where these two paths diverge.
Afterwards, a second DTW is used to align the onsets of individual notes based on the mapping from
the earlier step.

5.2.2 TheGlueNoteMatcher

TheGlueNote, introduced by Peter and Widmer (2024), is another DTW-based system. This system
uses a transformer encoder network, which computes positional embeddings of two note sequences.
The similarity matrix of these two sequences is then used for a weighted DTW-based warping path
extraction.

5.2.3 Pitch-IOI HMM

The PitchIOI HMM is a probabilistic symbolic alignment method used for real time piano accompa-
niment (Cancino-Chacén et al., 2023). This method uses a switching Kalman filter, a hybrid model
combining an HMM and a Kalman filter, with parameters conditioned on HMM states (Murphy,
1998). The observed variables are the performed MIDI pitch and the performed inter-onset intervals
(IOIs, i.e., the time interval between consecutive onsets). The hidden variables are the score onset
times, and the performance tempo (modeled by the Kalman filter part). The score position inference
is done using the forward algorithm (Rabiner and Juang, 1986; Murphy, 1998). The output of this
method only returns temporal alignment between performance time and score time, but does not
provide a note-level alignment. In order to obtain note-level alignment, a greedy pitch-wise matching
algorithm is used, which matches the performed MIDI pitch to the closest score note in the score
position returned by the HMM.

5.2.4 Merged-output HMM

Nakamura et al. (2017) proposed an HMM-based alignment system that combines outputs from
multiple HMM alignments. The system is using a prealigment by so-called temporal HMM. The
information from prealignment is used to detect performance errors by applying Viterbi algorithm
on clusters and notes in regions with extra notes. Finally, erroneous regions are realigned using
merged-output HMM, which combines multiple musical streams — one for each hand, separated by a
hand separation algorithm.

5.3 Position-based Full Realization Alignment

Assuming that a performance has a bass line already aligned with the score, we base the second
alignment step on the temporal relationships between unaligned (realization) and already aligned
(bass) notes in the performance.



First, we align performance realization notes with the performance bass notes (the performance notes
aligned to the bass line in the previous step) according to several conditions. Let on, and off, be
onset and offset times of a realization note, and on; onset time of a bass note and off, either offset
time of the bass note or onset time of the following bass note, if the following bass note starts before
the given bass note ends. A realization note gets aligned with a bass note if at least one of these four
conditions, defining whether a realization note shares a play time with a bass note, applies:

(1) ony < on, < off, < offy,
(2) on, < on, < off, < off, and off,, — on;, > ~(off,. — on,.)
(3) on, < on, < off, < off, and off, — on,. > ~(off,. — on,.)
(4) on, < ony < off, < off,

(1) )
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Figure 5: A performance realization note (orange) is aligned with an already aligned performance
bass note (blue) if both notes are played simultaneously, as defined by conditions (1) — (4).

These inequalities, visualized in Figure 5, describe cases in which the performance realization note
and bass note share a common duration time. This happens if one of the notes takes up the whole
duration of the other, or if a large enough portion of the realization note’s duration is played together
with the bass note. The parameter v = 0.25 governs how large the portion of the duration of the
realization note has to be played simultaneously with the bass note. This condition is most likely to
be triggered by a tied note that extends over multiple bass notes, which is prototypically done when
preparing a dissonance, and as dissonance is more significant than its resolution, we would expect it
to last for at least half the value of the following bass note. Setting v = 0.25 thus leaves a margin for
e.g., imperfect articulation or timing in performance. Other values of this parameter may prove to
lead to better performance, but a system that is too sensitive to -y is likely overfitting a test set and not
robust for real-world settings.

This does not necessarily align all the realization notes with the bass notes, Because this is required
by the task of realization, alignment as described in Section 4, a heuristic is applied to all realization
notes that have not yet been aligned: each unaligned note is connected to the closest bass note.

Finally, all realization notes are matched with the score notes corresponding to their performance bass
notes through the bass-line-to-score alignment. Note that this cannot be done directly because we
need to compare onset times like-to-like: performance onset times are in wallclock time (expressed
as MIDI ticks), while score onset times are in beats.

6 Alignment Experiments

Our experiments were conducted in two steps. First, we tested how well different alignment methods
and preprocessing techniques could align the bass line corresponding to the basso continuo part in



the score. In the second step, we evaluated the alignment of the full basso continuo realization. All
measurements were performed on the ground truth data described in Section 4.

6.1 Evaluation Metrics

In note-level symbolic alignment (Foscarin et al., 2022; Peter et al., 2023; Nakamura et al., 2017), a
pair of a performance note and a score note is considered a match if the two notes are aligned (by
an alignment algorithm or an annotator). A score note that has no counterpart in the performance is
marked as a deletion and a performance note not found in the score is labeled as an insertion. An
alignment can be then represented as a list of dictionaries where each dictionary has a label (match,
insertion or deletion) and an index of a performance and/or score note.

Symbolic alignment methods for Western classical music of the common practice period are typically
evaluated by computing precision, recall, and F1-score aggregated over all labels, or by focusing only
on matches (Peter et al., 2023; Peter, 2023; Peter and Widmer, 2024). However, in basso continuo,
the distribution of matches, insertions, and deletions differs from that observed in piano music of the
common practice period. Figure 6 shows the distribution of matches, insertions, and deletions in the
manually annotated bass line alignments from the ACoRD dataset, as well as from three widely used
symbolic datasets of piano performances aligned to their scores: ASAP (Peter et al., 2023), Batik (Hu
and Widmer, 2023), and Vienna 4x22 (Goebl, 2016). As shown in the figure, insertions account
for nearly three-quarters of the data in the basso continuo alignments, compared to less than 7% in
the other datasets. Therefore, instead of reporting aggregated metrics across all labels, we report
metrics separately for each label when evaluating bass line alignment. Note that for the realization
alignment task, there are no insertions, as all notes in the realization are aligned to the corresponding
bass note(s).

ACoRD bass line alignment ASAP dataset

s Matches: 86.4%
s Insertions: 6.4%
Deletions: 7.2%

e Matches: 26.7%
W Insertions: 72.6%
Deletions: 0.7%

Batik dataset Vienna 4x22 Piano Corpus

AN

mmm Matches: 98.6%
mmm Insertions: 0.4%
Deletions: 0.9%

mm Matches: 95.8%
mm Insertions: 4.0%
Deletions: 0.2%

Figure 6: Comparison of label distribution across three different datasets: a. Basso Continuo
Realization Dataset, b. ASAP dataset, c. Batik-plays-Mozart corpus, d. Vienna 4x22 Piano Corpus.
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6.2 Bass Line Alignment

For the bass alignment task, we tested the performance of the four alignment algorithms described
in Section 5.2. We also observed how three different performance preprocessing techniques affect
the performance of these alignment methods: no preprocessing, trimming, and inverted skyline (see
Section 5.1). Therefore, we have run 12 experiments with different combinations of a preprocessing
technique and an alignment system. Each combination produced alignment files, which have been
stored as Parangonada CSV files (Peter et al., 2023). We then compared these alignments with
manually aligned ground truth data and evaluated the alignments according to the methodology
described in Section 6.1.

6.3 Realization Alignment

For the realization alignment task, we use the output of the bass alignment with the position-based full
realization alignment described in Section 5.3. We compared how the 12 different outputs from the
bass line alignment (4 alignment methods x 3 preprocessing methods) affect the overall realization
alignment. Additionally, we test how the position-based full realization alignment would work in the
best-case “oracle” scenario, having access to the true bass line alignment from the ground truth.

6.4 Automatic Alignment Results

Results for the bass line alignment experiments are shown in Table 2. To test whether there is a
statistically significant difference in the performance of alignment methods (DualDTW, GlueNote,
PitchlOl HMM and Merged-output HMM) and preprocessing techniques (no preprocessing, trimming,
inverted skyline), we conducted an Aligned Rank Transform (ART) ANOVA (Wobbrock et al., 2011)
on the F1-scores for the 35 manually annotated files, for each label (matches, insertions and deletions).
ART ANOVA is a non-parametric version of the two-way ANOVA test, well suited for non-normally
distributed data, as is the case of the F1-score in our results.

The ART ANOVA tests for bass line alignment show that across all three categories (F1-scores for
matches, insertions, and deletions), the interaction between preprocessing technique and alignment
method was consistently significant (all p < 0.001), indicating that the accuracy of each alignment
method depends strongly on the preprocessing applied. For matches, there was also a significant main
effect of alignment method (p = 0.03) and a marginal effect of preprocessing (p = 0.07). Insertions
showed no significant main effects for either preprocessing (p = 0.62) or method (p = 0.85). In
contrast, deletions presented a significant main effect of preprocessing (p = 0.002), but marginal
effect of alignment method (p = 0.08). Note however, deletion label data do not provide much value
because the number of deletions is small, compared to the other labels (see Figure 6).

The results in Table 2 suggest that, for bass line alignment, the DualDTWNoteMatcher (Peter et al.,
2023) is the best performing alignment method. It shows consistently good performance even without
preprocessing, with only a slight improvement when trimming is applied, particularly for deletions.
In contrast, the other methods benefit substantially from the use of trimming.

The results for full realization alignment are shown in Table 3. In this case, we only report results
for matches, since, by construction, there are no insertions, and the deletions would be the same
as in the case of bass line alignment. We conducted an ART ANOVA on the 15 fully annotated
realization alignments to test whether there is a statistically significant difference in the F1-score of
the alignment methods (the 4 methods described above plus the “oracle” bass line alignment) and
preprocessing techniques. The results show again a significant effect for the interaction of alignment
method and preprocessing (p < 0.001), but neither alignment method (p = 0.38) nor preprocessing
(p = 0.48) showed a significant effect.

The results in Table 3 also suggest that the DualDTWNoteMatcher is the best performing automatic
alignment method, but it still lags behind from the oracle manual alignment. As shown in Figure 6,
given that there are approximately three performed non-bass notes per score note, correctly identifying
nine out of ten notes implies an error in every third or fourth bass note on average—or about once per
measure. In practice, however, these mistakes are likely to be distributed less evenly. This level of
accuracy is not yet sufficient for practical applications. A more detailed analysis of the errors would
be necessary to make further progress, but that is beyond the current scope. We simply provide these
baseline results as a foundation for future work to build upon.
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Table 2: Performance of bass alignment methods across three evaluation labels (match, insertion, and
deletion) under different preprocessing techniques

Alignment Method No Preprocessing Trimming Inverted Skyline

Precision  Recall F1 Precision  Recall F1 Precision  Recall F1

Match
DualDTWNoteMatcher 0.985 0.974 0979 0.986 0.980 0.983 0.963 0.677 0.793
TheGlueNoteMatcher 0.668 0.456 0.535 0.918 0.869 0.891 0.921 0.620 0.737

Pitch-IOI HMM 0.639 0.644 0.641 0.628 0.633  0.631 0.385 0.289  0.330
Merged-output HMM 0.441 0.345 0.379 0.875 0.871  0.872 0.752 0.615 0.673
Insertion

DualDTWNoteMatcher 0.993 0.997 0.995 0.995 0.996  0.995 0.886 0.994  0.937
TheGlueNoteMatcher 0.868 0982 0.921 0.969 0986 0977 0.876 0.993  0.930

Pitch-IOl HMM 0.961 0.957 0.959 0.959 0.955 0.957 0.884 0.978 0.928
Merged-output HMM 0.830 0.937 0.879 0.969 0.972 0971 0.873 0.944  0.907
Deletion

DualDTWNoteMatcher 0.576 0.646 0.583 0.604 0.645  0.605 0.064 0.693 0.110
TheGlueNoteMatcher 0.067 0482 0.102 0.368 0.609 0.401 0.053 0.591  0.093
Pitch-IOl HMM 0.123 0.081 0.094 0.109 0.072  0.083 0.031 0.215 0.049
Merged-output HMM 0.033 0.343  0.050 0.127 0.166  0.109 0.030 0.189  0.047

Table 3: Performance of realization alignment methods under different preprocessing techniques
Alignment Method No Preprocessing Trimming Inverted Skyline

Precision  Recall F1 Precision  Recall F1 Precision  Recall F1

Match

Manual bass alignment 0.966 0.925 0945 - - - - - -
DualDTWNoteMatcher 0.947 0.907 0.926 0.947 0.907 0.926 0.746 0.658 0.698
TheGlueNoteMatcher 0.473 0.428 0.449 0.883 0.840 0.861 0.701 0.617  0.656
Pitch-IOl HMM 0.636 0.607 0.621 0.626 0.598 0.612 0.307 0.272  0.288
Merged-output HMM 0.320 0.289 0.303 0.899 0.860 0.879 0.785 0.707  0.743

7 Discussion and Conclusions

What artists in fact play when they perform basso continuo today has been a topic overshadowed as
a subject of study by focus on the historical foundations and sources of continuo and questions of
historically informed performance practice (such as whether to accompany certain repertoire on the
harpsichord or the organ). This was also due to lack of continuo realization data that can be analyzed
in appropriate representations, since basso continuo is in its essence improvisation on a given notated
part and, thus, it is not primarily recorded or notated.

The digital domain is well-suited to broaden the scope of musicological and artistic research to include
continuo performances of current artists. To initiate this process, we have collected the ACoRD pilot
dataset of 6 hours of continuo realizations, consisting of 175 MIDI recordings of performances of 5
baroque pieces with basso continuo, performed by 7 harpsichordists.

To enable further research over this dataset, we have provided ground truth for continuo alignment,
and we have adapted currently existing performance-to-score alignment methods based on dynamic
time warping and hidden Markov model for a baseline system capable of basso continuo align-
ment. This required a change of paradigm from note-to-note alignment, as it is usually required
in full-score alignments of Western classical music, to many-to-many notes alignment. We have
tested four state-of-the-art alignment systems together with three preprocessing methods. While the
DualDTWNoteMatcher alignment method performs well for bass line alignment (with an F1-score
above 0.99 for insertions and around 0.99 for matches, though performance in the small deletions
category remains unsatisfactory), and also achieves over 0.9 F1-score for full realization alignment, a
more detailed analysis of specific issues in continuo alignment is needed to bring this fundamental
task to a level suitable for artist-facing applications.

Such observations from continuo research can also serve as a precursor to computational research
of other semi-improvisatory genres that use partially notated music. Improvising accompaniment
upon incomplete notation (Butt, 2002) by creating musical textures in harmony according to a given
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style is the main task of the majority of keyboard players across multiple genres (Dobbins, 1980;
Sarath, 2013), beyond the Historically Informed Performance movement, such as jazz (Dobbins,
1984; Konowitz, 1969) or pop music (Fulara, 2013; Marino, 2021).

Basso continuo is a fascinating intersection of the contemporary and the historical, the written and the
improvised, the theory and its embodied practice. It has been barely explored in the digital domain
despite the inherent advantages that this domain provides for its empirical study. Further down this
line of work are also applied goals: professional harpsichordists, but especially the growing number
of continuo learners would benefit from a model of continuo that provides personalized feedback in
individual practice. But to this end, more must be done. We hope that making available the ACoRD
dataset and the baseline alignment system is a good first step in digital preservation, modeling, and
analysis of basso continuo, and we look forward to how others may take this opportunity to direct
more attention at continuo in the music computing world.
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