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Abstract
Visual piano transcription (VPT) is the task of ob-
taining a symbolic representation of a piano per-
formance from visual information alone (e.g., from
a top-down video of the piano keyboard). In this
work we propose a VPT system based on the vi-
sion transformer (ViT), which surpasses previous
methods based on convolutional neural networks
(CNNs). Our system is trained on the newly intro-
duced R3 dataset, consisting of ca. 31 hours of syn-
chronized video and MIDI recordings of piano per-
formances. We additionally introduce an approach
to predict note offsets, which has not been previ-
ously explored in this context. We show that our
system outperforms the state-of-the-art on the Pi-
anoYT dataset for onset prediction and on the R3
dataset for both onsets and offsets.

1 Introduction
Automatic music transcription (AMT) is the process of con-
verting a music recording (typically an audio recording) into
a symbolic representation (such as MIDI or sheet music) us-
ing computational methods [Benetos et al., 2019]. AMT is a
cross-modal task that bridges audio and symbolic music pro-
cessing and is a fundamental task in music information re-
trieval (MIR). The generated symbolic music representation
is often inspired by MIDI, with notes represented by their
onset (start time), offset (release time), pitch, and velocity
(loudness). Various MIR tasks, such as music search (index-
ing, recommendation), automatic music accompaniment, and
music generation, benefit from the symbolic music represen-
tation produced by an AMT algorithm [Benetos et al., 2019;
Schedl et al., 2014]. AMT systems also facilitate the creation
of new datasets [Zhang et al., 2022; Kong et al., 2022], which
can support a range of MIR tasks.

Although audio-based methods have been the primary fo-
cus of past AMT research, transcription from visual infor-
mation, either alone or in combination with audio, presents
an interesting approach to exploring cross-modal mappings,
particularly in linking finely controlled gestures/movements
with musical actions. Learning these mappings is valuable
not only for AMT itself but also as an intermediate represen-
tation for tasks that connect motion to music-making, such

as music learning tools that could provide feedback during a
performance.

In this work, we focus specifically on the case of automatic
piano transcription (APT) for silent video. A top-down video
can provide a substantial amount of information about a pi-
ano performance, allowing for the direct visualization of note
onsets, offsets, and pitch-values based on key-presses and re-
leases. Videos with such setup are a popular way to showcase
piano-related content on platforms such as YouTube.1 Re-
search into video-based APT has shown that visual input can
supplement audio-based methods, helping models handle har-
monics [Wan et al., 2015] and improving overall system per-
formance in cases where the audio data is distorted [Koepke
et al., 2020]. Additionally, video can assist with tasks such as
video–audio synchronization and it can provide a transcrip-
tion solution in scenarios where no audio is available for a
musical performance.

Previous research on visual piano transcription (VPT)
has used convolutional neural networks (CNNs) for this
task [Wang et al., 2021; Koepke et al., 2020; Wan et al.,
2015]. Recently, the video vision transformer (ViViT) [Arnab
et al., 2021] has been shown to be competitive with state-of-
the-art (SotA) CNNs in computer vision benchmarks. This
is leading to a shift in the computer vision space from CNNs
to transformers. Training a machine learning VPT system re-
quires data in the form of videos and corresponding MIDI
files. Current machine learning methods rely on datasets
generated from audio-based APT for training and testing
(i.e., using APT to transcribe the audio track in the video,
and use the resulting MIDI file as the ground truth) [Su
et al., 2020; Koepke et al., 2020]. However, using these
datasets may introduce artifacts due to limitations inherent
in audio-based AMT. In particular, recent work has high-
lighted the limitations of APT, primarily due to SotA APT
methods being trained on the same dataset (the MAESTRO
dataset [Hawthorne et al., 2019]). Additionally, audio-based
APT is limited in accurately transcribing note durations for
this purpose, due to pianists’ use of the sustain pedal. [Hu et
al., 2024; Marták et al., 2024; Edwards et al., 2024]. Further-
more, current VPT methods focus on predicting onsets and
pitches only [Koepke et al., 2020; Suteparuk, 2014], but not
offsets (with the exception of [Su et al., 2020], which gener-

1See, e.g., https://www.youtube.com/watch?v=xspj9uE5TQQ
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Figure 1: Overview of the model architecture.

ates an intermediate piano-roll–like representation to gener-
ate audio).

The contributions of this paper are the following:
1. We propose a system based on the vision transformer

(ViT) [Dosovitskiy et al., 2021] that is competitive with
the SotA in VPT. The proposed system is illustrated in
Figure 1.

2. We investigate two approaches to predict offsets, namely
predicting frames directly, as well as an approach based
on the Onsets and Frames (OaF) APT model for audio
[Hawthorne et al., 2018] and we compare the overall
performance of the two for the purpose of our task.

3. We introduce the R3 dataset, containing 895 synchro-
nized and high quality video, audio, and MIDI record-
ings of two professionally trained pianists practicing var-
ious pieces, amounting to ca. 31 hours of music. To the
best of our knowledge, this is the largest dataset for the
task, being almost twice the size as the previous largest
dataset [Koepke et al., 2020] (which consists of tran-
scribed piano performances, not real “performed” MIDI
files).

Alongside our contributions, we also present the rationale
behind key choices made during the design of our system.
These include the results of our experimentation in progres-
sively adding data augmentation techniques when training the
ViT, as well as our use of loss weights to deal with the spar-
sity of positive note events. Lastly, we present the overall
performance of our model and compare it directly to other
SotA methods.

The structure of this work is as follows: Section 2 reviews
related work on visual transcription and multi-modal com-
puter vision tasks. Section 3 describes our ViT-based tran-
scription architecture. Section 4 describes the R3 dataset.
Section 5 describes the experimental setup. Section 6
presents the results of our experiments. Section 7 provides
a discussion. Finally, Section 8 concludes the paper.

2 Related Work
In this section we discuss some related work on APT and
transformer-based multi-modal computer vision tasks.

2.1 Audio-based Automatic Piano Transcription
Piano transcription is one of the most popular subtasks in
AMT. Its popularity is partially due to the relatively lim-
ited number of degrees of freedom for transcribing piano
(i.e., needing onset and offset times, played note and po-
tentially pedal), when compared with other instruments like
violin or voice. Furthermore, there are large datasets for
audio-based piano transcription, including the MAESTRO
dataset [Hawthorne et al., 2019]. A comprehensive review
of AMT is provided in [Benetos et al., 2019].

Early approaches for audio-based APT used a sliding win-
dow over the audio spectrogram, predicting whether each
note was present in the current “frame” [Kelz et al., 2016].
Such an approach is similar to the one taken by VPT models,
which iterate over the frames in a video [Koepke et al., 2020;
Suteparuk, 2014]. The OaF model [Hawthorne et al., 2018]
was the first audio based AMT model to conduct dual-
objective piano transcription, showing that it can be beneficial
to model note onsets separately from frames.

CNNs have been the model of choice for spectrogram-
based APT [Hawthorne et al., 2018; Kelz et al., 2016;
Kong et al., 2022]. In recent years, however, transformer-
based models been shown to work well for both multi-track
transcription [Gardner et al., 2022] and single-track piano
transcription [Hawthorne et al., 2021]. By using end-to-end
machine learning architectures, these works move the prob-
lem from hand designing a system for AMT to creating a
high-quality dataset and fitting a model to it.

2.2 Video-based Automatic Piano Transcription
Because of the easily discernible black and white keys of the
piano, traditional computer vision algorithms are able to reg-
ister a piano keyboard in an image and even identify separate



keys. This enables such tools to detect onsets on the piano
with a high degree of accuracy [Suteparuk, 2014]. Such an
approach is very difficult to apply to various lighting and en-
vironmental conditions, however. It also struggles in cases
where the piano keys may be slightly obscured, or when the
piano is at an angle in the image. Additionally, traditional
computer vision tools are unable to capture and reason about
complex movements across multiple frames in a video.

More recently, CNNs have been shown to work well for
VPT. By using a modified ResNet [He et al., 2016] model,
[Koepke et al., 2020; Su et al., 2020] were able to make
onset and pitch predictions directly on a cropped image of
the piano. [Koepke et al., 2020] showed that their vision-
based model can compensate for poor quality audio, helping
an audio-based AMT algorithm perform better. There are also
systems that are explicitly designed around using both video
and audio simultaneously. Such an audio-visual model is pre-
sented by [Wang et al., 2021]. In their approach, they use the
video model primarily for eliminating harmonic errors. This
is done by tracking the pianists hands and eliminating any
predicted notes that would be impossible to play from that po-
sition. [Su et al., 2020] present Audeo, an approach that gen-
erates audio by first generating an intermediate pianoroll-like
representation, followed by a synthesis step. The main com-
ponent of this intermediate step, referred to as Video2Roll
Net, is a ResNet model similar to the one used by [Koepke et
al., 2020], but enhanced with feature attention for improving
visual cues at multiple scales.

2.3 ViT for Video and Multi-modal Applications
Since ViT showed that transformer architectures can outper-
form comparative CNNs in the ImageNet benchmark [Rus-
sakovsky et al., 2015], there has been an increased interest
in transformers for computer vision. When adapting ViT to
video, there have been numerous architectures proposed, al-
though most focus on classification. SwinBERT [Lin et al.,
2022] is a multi-modal architecture which is able to take a
video clip and generate a text caption describing it. While
SwinBERT uses both a Swin transformer [Liu et al., 2021]
and a multimodal transformer encoder to generate the cap-
tion text, we are able to avoid needing a second model thanks
to the simplicity of piano transcription compared to language.

Our proposed model is instead more similar to the spatio-
temporal attention variant of ViViT [Arnab et al., 2021;
Bertasius et al., 2021]. This type of ViViT is a direct gen-
eralization of ViT to video, and has been utilized by the
Video Masked Autoencoders [Tong et al., 2022] for a vari-
ety of video classification tasks including fine-action detec-
tion. The Video-Audio-Text transformer [Akbari et al., 2021]
also utilizes the same method, but appends additional audio
and text tokens to the input sequence to conduct multimodal
self-supervised learning, generating representations that are
useful for both video and audio classification.

3 Visual Transcription Architecture
In this section we describe the details of our ViT-based tran-
scription model. For a visual overview of the system, see
Figure 1.

Figure 2: An illustration of accepted and rejected frame predictions.

3.1 Predicting Onsets and Offsets
When considering methods for onset/offset prediction, the
simplest choice is to conduct 88 classifications for each frame
in the video, predicting what notes are present in each given
frame. These framewise predictions can then be concatenated
into an array to form a prediction for the entire video. A VPT
method that utilizes this approach is the Audeo model [Su et
al., 2020], which additionally places an extra generative ad-
versarial network on top of the video predictions.

Splitting a note up into distinct onset and frame predic-
tions, enables us to reject spurious positive frames when they
are missing a corresponding onset. An example of this is vi-
sualized in Figure 2. Modeling onsets separately from the rest
of the note is also closer to what is happening physically in
the video, as pressing down a note and holding down a note
are two different actions.
Inference. When performing inference over an entire
video, we iterate over all frames and then concatenate the pre-
dictions to produce an array of shape

(88×2,number_of_frames−⌈window_size/2⌉×2).

Some frame predictions are missing at the start and end be-
cause we need enough frames to create a window. An alter-
native to skipping the first and last few frames could be to pad
the start and end of the video. As there are 88 notes, to pre-
dict both onsets and frames we require 176 total predictions
per frame. Because we train our model on a temporal resolu-
tion of 30 fps, all predicted notes get assigned to their nearest
frame, leading to a potential error of 15ms even given perfect
predictions. Achieving a high temporal accuracy is therefore
a key area where VPT is more challenging than audio based
AMT.

3.2 Post-Processing
After iterating through the video, the resulting array still con-
tains some noise. To remove this we apply a Gaussian filter
along the time axis (similarly to [Koepke et al., 2020]) indi-
vidually to the onset and frame predictions. For onsets we
use σ = 0.2 and a kernel radius of 8, while for frames we
use σ = 0.8 and a kernel radius of 4. We then threshold the
smoothed array using a value of 0.5.

To identify onsets, we find regions in the onset predictions
which are positive for 1 or more consecutive time steps, and
assign the corresponding onset to the time step with the high-
est predicted value in that region. After finding an onset for a



note, we then iterate over all positive frames that succeed that
onset until we reach the end of the predicted frames. The final
4 frames are ignored in order to compensate for the Gaussian
smoothing (which can cause false positives up to the size of
the kernel radius). At this point we have a completed piano
roll, which can be converted directly into MIDI. Although our
model outputs both onsets and frames, we can also choose
to utilize either one of them to predict only onsets or only
frames. We take this approach in Section 6.2 to evaluate how
well frame predictions perform for predicting onsets and off-
sets.

3.3 Vision Transformer Backbone
We introduce a new backbone architecture for VPT built upon
the ViT, which accepts a video clip sampled at 30 fps consist-
ing of 6 frames with a resolution of (64, 784), and outputs a
vector of size (176) containing onset and frame predictions
for the third frame in the input window. The architecture is
visualized in Figure 1.

In order to convert the input video clip to embeddings, we
utilize the tubelet embedding method used in ViViT [Arnab
et al., 2021]. Tubelet embeddings are a direct generalization
to 3D of the “patchification” procedure used in ViT. Defining
a tubelet size of (t × h × w), we reshape a video with size
(T,H,W ) to:(⌊

T

t

⌋
×
⌊
H

h

⌋
×
⌊
W

w

⌋
, t× h× w

)
.

A linear layer is then applied to project the flattened tubelets
xi ∈ Rt×h×w to zi ∈ Rd, where d is the embedding di-
mension. After appending a learned [CLS] token to the
start of the sequence and adding the positional embeddings,
the tokens are passed through a standard transformer en-
coder. While VPT approaches utilizing ResNets benefit from
the addition of a “slope vector” to help the model iden-
tify the location of keys in the image [Koepke et al., 2020;
Su et al., 2020], because ViT uses absolute positional embed-
dings, we do not require any such modifications.

As vision transformers have been shown to require exten-
sive pre-training to achieve satisfactory results, we choose to
utilize the high-quality distilled ViT-small weights provided
by [Wang et al., 2023]. The ViT-small model consists of
12 Transformer Encoder layers, an embedding dimension d
of 384, 6 attention heads, and an MLP hidden dimension of
1536. The model was pre-trained on 16 frame long video
clips with a resolution of (224×224) and a tubelet size of
(2×16×16). We change the resolution of the model to (64,
784), and number of frames to 6. Although this is a large
change, we choose the resolution such that the number of to-
kens per frame stays the same:

H

h
× W

w
=

64

16
× 784

16
=

224

16
× 224

16
= 196.

When adapting the positional embeddings to the new number
of frames, we simply remove the section that used to corre-
spond to the extra frames and keep the rest. To generate onset
and frame predictions, we follow the same procedure used
during pre-training, taking the mean of the output embed-
dings and placing a linear head on top. Therefore, we are able

No. Notes Total Duration
Dataset Test Train Test Train

R3s 98,045 292,814 2.9h 8.5h
R3x 119,725 479,629 3.6h 15.8h

R3 (Total) 217,770 772,443 6.6h 24.3h

PianoYT 33,535 369,922 1.7h 17.2h

Table 1: Statistics on the number of notes and total video duration
in the R3 (R3s + R3x) and PianoYT datasets.
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Figure 3: Note distribution for the R3 and PianoYT datasets.

to utilize the pre-trained model with a different resolution and
number of frames without requiring the re-initialization of
any weights or rescaling of the positional embedding.

4 Datasets
4.1 R3
In order to train our ViT-based model, we introduce a dataset
consisting of ca. 31 hours (shown in Table 1) of recordings
from 62 different piano practice sessions by two profession-
ally trained pianists (each with an average of 14 years of
formal music education). The recordings come from work
on the Rach3 dataset [Cancino-Chacón and Pilkov, 2024]
with additional processing and annotations added for the pur-
poses of the current work. Each session contains a top-
down video with synchronized audio, high-quality FLAC,
and MIDI recordings. We do not use the audio recordings
in our experiments, but they are available for future work and
for the benefit of the community. We also provide tight crops
around the piano keys for all videos. Two different pianos
are used throughout the practice sessions: a Yamaha GB1k
Silent and an Essex EUP-116 equipped with a silent system
(allowing for MIDI capturing). For audio we use AKG P170
condenser microphones and a Focusrite Scarlett 2i2 audio in-
terface. The video is captured with GoPro cameras.

R3 includes two sub-splits which differ in content variety
and size. The R3s split contains practice sessions from one pi-
anist practicing Rachmaninoff’s Piano Concerto No. 3 Op. 30
(and hence the name of the dataset), while R3x contains ses-
sions from both pianists practicing a variety of pieces from
the Western Classical repertoire. Both splits have been pro-
cessed exactly the same way and differ only in musical con-
tent.

As part of our dataset preparation pipeline, we split all
recordings into smaller chunks between ∼ 50 seconds and



∼ 447 seconds. This results in 895 individual sets of syn-
chronized video, FLAC, and MIDI recordings. To create
crops around the piano keyboard, we employ an automatic
template matching approach with manual adjustments where
necessary. We create train and test sets using a 25/75 split, re-
sulting in 181 samples in the combined test and 714 samples
in the combined train set. To ensure that each test set is com-
prised of completely different practice sessions from those
present in the train sets, we ensure that no samples share the
same date across splits. Figure 3 shows the distribution of
MIDI pitches throughout the datasets.

4.2 PianoYT
Introduced by [Koepke et al., 2020], this dataset consists of
ca. 19.2 hours (shown in Table 1) of top-down piano perfor-
mance videos downloaded from YouTube. Dataset labels are
generated automatically using the OaF model [Hawthorne et
al., 2018]. We note that our version of the PianoYT dataset is
missing 2 videos in the train set due to them no longer being
available on YouTube.

The amount of notes and the total duration of both datasets
are shown in Table 1. Our R3 dataset has not only a longer
total duration than PianoYT, but the total number of notes is
more than double, indicating a higher note density than Pi-
anoYT. This could be attributed to either faster piano pieces
being played or less silence throughout the R3 dataset. Pi-
anoYT also has a significantly smaller test set than R3.

5 Experimental Setup
5.1 Video Pre-Processing
In order to make data loading easier and have a consistent
temporal resolution throughout all datasets, all videos are first
transcoded from their native frame-rate to a frame-rate of 30
using FFmpeg.2 We then crop out the piano using the crops
provided with the datasets. Lastly, we ensure that the image
is in the correct orientation and is mirrored correctly. Specif-
ically, this requires rotating all PianoYT images 180 degrees
to have the same orientation as R3.

Video Augmentations: As data augmentations we ran-
domly apply Gaussian noise, random rotations, brightness
and scale jittering. We also utilize a grayscale transforma-
tion to remove potentially unimportant information from the
image. Lastly, we normalize all frames using the mean and
std. from ImageNet [Deng et al., 2009].

5.2 MIDI Pre-Processing
When adding onset labels, we first assign each note onset to
the nearest video-frame, giving it a label of 1. Then we addi-
tionally assign a value of 0.5 as an onset label for the next and
previous video-frames. To calculate frame labels, we assign
a label of 1 when the note is pressed down, with the video-
frame before and after the positive region being given a label
of 0.5. The additional positive values are added in order to
increase the number of positive onset and frame values in the
dataset and also to deal with possible differences in timing
between datasets.

2https://ffmpeg.org/

5.3 Class Weights
We employ the binary cross-entropy (BCE) loss function,
modeling our problem similarly to multi-label classification
and conducting 176 binary classifications. When training for
joint onset and frame prediction, we obtain the final loss by
summing the loss from both predictions. Due to the sparsity
of positive classes in the datasets, we also apply class weights
directly to the output of the loss function, which gives us the
ability to control the weight of the positive samples in the
dataset. This results in the following loss function:

LBCE = − 1

N

N∑
i=1

wi [yi log(ŷi) + (1− yi) log(1− ŷi)] .

where yi is the ground truth, ŷi is the model output, and wi is
the weight for the i-th sample, and N is the number of sam-
ples. By changing the positive class weights, we can balance
the precision and recall of the model.

When choosing what class weights to use, we first calcu-
late the ratio of positive to negative frames for each note. We
then rescale this to be within [2, 4] for frames and [3, 5] for
onsets. Rescaling is something we found necessary, as we
found very-high class weights led to unstable training. Be-
cause onsets are sparser than frames, we use larger positive
class weights for them.

5.4 Training
We utilize either two GPUs with a total batch size of 32
or 4 GPUs with a total batch size of 384 when training on
PianoYT or R3 respectively. When training on R3 we use
the AdamW [Loshchilov and Hutter, 2017] optimizer with a
weight decay of 0.05. When fine-tuning a model trained on
R3 on PianoYT, we use SGD with a momentum of 0.9. The
learning rate for all runs follows a cosine decay function with
a warmup of either 10% or 25% of all training steps depend-
ing on whether we are training on PianoYT or R3 respec-
tively. We utilize the same image augmentations as described
in Section 5.1 across all runs on R3 and PianoYT.

5.5 Evaluation
We follow the standard evaluation practices used in AMT
[Hawthorne et al., 2018; Koepke et al., 2020; Hu et al., 2024;
Ycart et al., 2020] and we employ the precision, recall, and
F-measure as our evaluation metrics. These metrics can be
computed either framewise, where we consider each frame
as a separate prediction, or notewise, where each note is de-
scribed by its onset, offset, and pitch. Additionally, notewise
metrics can be computed onsetwise, where we only consider
the pitch and onset of each note, ignoring the offset, which is
useful for comparing with previous work that does not predict
offsets.

For onsetwise and notewise metrics, we evaluate model
performance using the transcription evaluation utilities pro-
vided by mir_eval [Raffel et al., 2014]. This implementa-
tion matches as many notes as possible by checking if the dis-
tance between predicted note onset/pitch and reference note
onset/pitch is less than set tolerance values, before comput-
ing the respective metrics using this matching. We keep all

https://ffmpeg.org/


F-score
Configuration Framewise Onsetwise Notewise

Color inputs 0.08 0.18 0.06
+ Grayscale 0.12 0.25 0.07
+ DataAugment 0.16 0.39 0.13
+ Class Weights 0.31 0.63 0.20

Table 2: The effect of progressively adding augmentations and class
weights on ViT performance.

settings at their defaults except the onset tolerance, which we
increase from 50ms to 100ms. This corresponds to an in-
crease from an onset tolerance of ∼ ±1 to ±3 frames, mean-
ing that a predicted onset up to 3 frames away from the true
onset would now be considered correct. This window size
in the 100ms case is close to the limit of human detectabil-
ity thresholds [ITU-R, 1998]. We show the effects differ-
ent onset tolerances have on the model performance in Fig-
ure 4. For framewise metrics, we follow [Ycart et al., 2020;
Hu et al., 2024], and we use a frame-rate of 30 fps to match
the frame-rate of the input videos.

6 Experimental Results
6.1 Augmentations and Class Weights
In order to explore the contribution of each design choice
leading up to our final proposed ViT model training pro-
cedure, we perform an ablation study on the smaller R3s
dataset. To show the effect of preprocessing, data augmenta-
tion techniques, and class weights, we iteratively add them to
the training recipe and observe the change in the models per-
formance on the R3s validation set after training for 5 epochs.
More details on the exact hyperparameters used for the abla-
tion study can be found in Appendix A in the supplementary
materials.

Utilizing grayscale inputs already leads to an improvement
in the model’s performance, as is shown in Table 2. Adding
the collection of data augmentation techniques discussed in
Section 5.1, indicated as DataAugment, as well as the class
weights discussed in Section 5.3, continued to improve met-
rics greatly. Overall, these results support our choice to use
these techniques when training the ViT.

6.2 Predictive Accuracy
Here we show the performance of our ViT-based model on
the R3 and PianoYT datasets and compare it to the previ-
ous ResNet-based models proposed by [Koepke et al., 2020;
Su et al., 2020]. We also investigate the differences between
using the onsets-and-frames approach for note predictions
versus the frames-only one to see which could be a better
modeling strategy for this task. This is done by training all
models on joint onsets and frames, and then ignoring the on-
set predictions during post-processing. All results are shown
in Table 3. The model called S2S is our re-implementation
of ResNet with aggregation and slope module presented by
[Koepke et al., 2020], and V2R is the official implementation
provided by [Su et al., 2020] for their Video2Roll Net.

R3: We train all models on joint onsets and frames on R3
for 10 epochs, utilizing all the methods tested in Section 6.1.
When training our ViT model we additionally find it neces-
sary to use stochastic depth [Huang et al., 2016] to combat
overfitting. When training the CNNs we did not encounter
overfitting to the same degree as with the ViT, and instead
chose to use use early stopping. Additional details on the pa-
rameters for these runs can be found in Appendix B in the
supplementary material. We evaluate metrics on the two sub-
splits of R3, R3s and R3x, as well as on PianoYT, which is
not included in the training data.

In all metrics, our ViT model outperforms the other two.
Interestingly, when looking at the performance on PianoYT,
the ViT is the only model that somewhat generalizes to the un-
seen dataset. We also find interesting that, although there are
some architectural differences between the two CNNs, they
both perform very similarly across a wide range of metrics.
This suggests that the most important factor for the perfor-
mance of these models is the shared ResNet backbone.

When comparing metrics between onsets-and-frames and
frames-only prediction approaches, the first approach seems
to fall behind. Although onsetwise metrics are very similar
for the two approaches, framewise and notewise metrics are
higher when predicting only frames. Framewise scores seem
to benefit the most when utilizing frame-only predictions.

PianoYT: When training on PianoYT, we utilize the mod-
els that were already pre-trained on R3 and then fine-tune
them on PianoYT. For this reason, we find it sufficient to train
for only 5 epochs on PianoYT. Detailed hyper-parameters for
these runs can be found in Appendix B in the supplementary
material. Since the PianoYT ground truth offsets are of low
quality, we only train on onsets. Our ViT model shows better
performance again, while both ResNet-based models achieve
the same onsetwise scores. Perhaps the largest difference be-
tween the ViT and ResNet models is the ability of the ViT
to better maintain performance on the R3 dataset it was pre-
trained on.

7 Discussion
Our results across all datasets show strong scores in favor of
the ViT based model. Our model is able not only to outper-
form previous ResNet based approaches on the data it was
trained on, but also shows very promising generalization ca-
pabilities. We believe that these capabilities are the result of a
combination of high quality pre-trained weights and a larger
model that is able to learn and retain more information. The
large size of R3 is also likely more beneficial to a large model
that has the capacity to learn from the extra data.

We also discovered that a frames-only approach works bet-
ter than joint onsets and frames. This could be due to the spar-
sity of onset events as compared to frame-level events, which
could lead to poorer quality onset predictions. These results
show a stark difference from audio based models, which have
been shown to benefit from the joint modeling task. We
did find the onset predictions useful when fine-tuning on Pi-
anoYT however, as they allowed us to adapt the joint onset
and frame model to just onsets without having to make any
changes.



R3s R3x PianoYT
Model Framewise Onsetwise Notewise Framewise Onsetwise Notewise Onsetwise

Trained on R3
Predicting Onsets and Frames

S2S [Koepke et al., 2020] 0.31 0.84 0.18 0.46 0.83 0.46 0.06
V2R [Su et al., 2020] 0.31 0.84 0.18 0.45 0.82 0.47 0.01
ViT (ours) 0.32 0.87 0.19 0.48 0.85 0.49 0.40

Predicting Frames only

S2S [Koepke et al., 2020] 0.51 0.82 0.27 0.63 0.81 0.55 0.24
V2R [Su et al., 2020] 0.52 0.86 0.28 0.63 0.83 0.57 0.05
ViT (ours) 0.52 0.88 0.29 0.63 0.85 0.57 0.35

Trained on R3, finetuned on PianoYT
Predicting Onsets Only

S2S [Koepke et al., 2020] - 0.21 - - 0.30 - 0.64
V2R [Su et al., 2020] - 0.21 - - 0.30 - 0.64
ViT (ours) - 0.58 - - 0.72 - 0.68

Table 3: Performance comparison (F-score) of models trained on R3 and fine-tuned on PianoYT
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Figure 4: Notewise F-score on R3x for different onset tolerances for
ViT, S2S and V2R models.

Onset Tolerances. To investigate the temporal accuracy of
the models on the R3x dataset, we plot the notewise F-score
in Figure 4. Although all models struggle to predict notes
within a one frame tolerance, they get much better up to a 3
frame tolerance, at which point they start to plateau. These
results show how challenging it is to make temporally accu-
rate predictions at a frame-rate of 30 fps, and highlight an area
where VPT algorithms can still be greatly improved.

Supplementary Materials. We provide a Google Colab
showcasing the inference procedure of our model and a
YouTube playlist with example predictions at this web page.3
Dataset, model weights, and training/evaluation code are also
public and made available.

3https://chromeilion.github.io/onf vpt/

8 Conclusions
This paper introduces a transformer architecture for visual
piano transcription. Our experimental results show that the
proposed architecture can compete with and even outperform
previous CNN-based models. To further aid model train-
ing, we introduce a new dataset, R3, containing synchronized
video, audio and MIDI data. Additionally, we investigate the
effect of positive class weights on model performance, high-
lighting their importance and impact on the final model. We
also compare two approaches for note onset and offset predic-
tion and discover that the frames-only approach could provide
better results than the joint onsets-and-frames one for VPT in
contrast to audio-based AMT, highlighting the differences be-
tween the two tasks.

Future research could focus on improving temporal accu-
racy by training on a higher frame rate or by making sub-
frame predictions. Another possible direction is addressing
the strong influence of the model’s pre-trained weights on
our method, potentially by conducting pre-training specifi-
cally for the VPT task. We would also like to investigate ex-
plicitly learning offsets, similarly to the approach used for on-
sets, to obtain better performance in notewise and framewise
metrics. Furthermore, a full transformer Encoder–Decoder
could be used to predict MIDI-like tokens directly from the
video clip, using a larger temporal size, such as 32 frames, to
process approximately one second of video at a time. This ap-
proach would function similarly to [Hawthorne et al., 2021]
and eliminate the need for a hand-crafted post-processing
pipeline. Finally, more work in the direction of utilizing both
audio and video for AMT could lead to overcoming the lim-
itations of each of the modalities and achieving even better
results.

https://chromeilion.github.io/onf_vpt/
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A Ablation Hyperparameters
All experiments in the ablation study were performed with
our ViT model trained on the smaller R3s subset and used
the hyperparameters listed in Table 4 for training. Configu-
rations that use DataAugment utilize all augmentations listed
in Table 7.

R3s

Optimizer AdamW
Weight decay 0.05
Learning rate 1×10−3

Warmup percentage 0.25
Epochs 5
Batch Size 96

Table 4: Training hyperparameters for all ablation experiments.

B R3 and PianoYT Training
Hyperparameters

The hyperparameters used when training our ViT model
are detailed in Table 5. Hyperparameters for the S2S and
Video2roll models are detailed in Table 6. All these runs uti-
lize the image augmentations detailed in Table 7.

R3 PianoYT

Optimizer AdamW SGD
Momentum - 0.9
Weight decay 0.05 0.0
Learning rate 1×10−3 0.25
Warmup percentage 0.25 0.10
Epochs 10 5
Total Batch Size 384 32
Stochastic droplayer rate 0.3 0.0
Pytorch AMP yes yes

Table 5: Training hyperparameters for the ViT model from the main
paper.

R3 PianoYT

Optimizer AdamW SGD
Momentum - 0.9
Weight decay 0.05 0.0
Learning rate 1×10−3 0.25
Warmup percentage 0.25 0.10
Epochs 10 5
Total Batch Size 384 32
Stochastic droplayer rate 0.0 0.0
Pytorch AMP no no

Table 6: Training hyperparameters for both the S2S and Video2roll
model.

Paremeters Probability

ScaleJitter4 min: 0.96, max: 1.001 1
ColorJitter5 brightness: 0.1 0.4
RandRotation6 degrees: 0.2 0.4
Grayscale - 1

Table 7: Data augmentation details, these settings were used across
all training runs on R3 and PianoYT.

C Additional Implementation Details
Here we provide additional information on some of the tech-
niques we used when training the ViT model.

Pytorch AMP:
In order to speed up some training instances of our ViT

models on the A40 GPUs, we utilized half-precision (float16)
training handled by Pytorch’s Automatic Mixed Precision7

(AMP) package. These instances are respectively marked in
Table 5.

Stochastic Droplayer: Stochastic droplayer is a form of
dropout where whole layers in the model are zeroed out with
the following probability:

pl =
l

L
pL (1)

Where pl is the probability of the layer at depth l being
zeroed out, pL is the probability of the last layer being zeroed
out, and L is the number of layers in the model. Therefore,
the probability pl grows linearly as depth increases until it
reaches the maximum pL.

4https://docs.pytorch.org/vision/main/generated/torchvision.
transforms.v2.ScaleJitter.html

5https://docs.pytorch.org/vision/main/generated/torchvision.
transforms.v2.ColorJitter.html

6https://docs.pytorch.org/vision/main/generated/torchvision.
transforms.v2.RandomRotation.html

7https://docs.pytorch.org/docs/stable/amp.html

https://docs.pytorch.org/vision/main/generated/torchvision.transforms.v2.ScaleJitter.html
https://docs.pytorch.org/vision/main/generated/torchvision.transforms.v2.ScaleJitter.html
https://docs.pytorch.org/vision/main/generated/torchvision.transforms.v2.ColorJitter.html
https://docs.pytorch.org/vision/main/generated/torchvision.transforms.v2.ColorJitter.html
https://docs.pytorch.org/vision/main/generated/torchvision.transforms.v2.RandomRotation.html
https://docs.pytorch.org/vision/main/generated/torchvision.transforms.v2.RandomRotation.html
https://docs.pytorch.org/docs/stable/amp.html
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