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Abstract: In the pursuit of developing expressive music performance models using artificial intelli-
gence, this paper introduces DExter, a new approach leveraging diffusion probabilistic models to
render Western classical piano performances. The main challenge faced in performance rendering
tasks is the continuous and sequential modeling of expressive timing and dynamics over time,
which is critical for capturing the evolving nuances that characterize live musical performances.
In this approach, performance parameters are represented in a continuous expression space, and
a diffusion model is trained to predict these continuous parameters while being conditioned on
a musical score. Furthermore, DExter also enables the generation of interpretations (expressive
variations of a performance) guided by perceptually meaningful features by being jointly conditioned
on score and perceptual-feature representations. Consequently, we find that our model is useful for
learning expressive performance, generating perceptually steered performances, and transferring
performance styles. We assess the model through quantitative and qualitative analyses, focusing
on specific performance metrics regarding dimensions like asynchrony and articulation, as well as
through listening tests that compare generated performances with different human interpretations.
The results show that DExter is able to capture the time-varying correlation of the expressive pa-
rameters, and it compares well to existing rendering models in subjectively evaluated ratings. The
perceptual-feature-conditioned generation and transferring capabilities of DExter are verified via a
proxy model predicting perceptual characteristics of differently steered performances.

Keywords: piano performance; expressive rendering; diffusion model; deep learning; music

1. Introduction

A trained musician can take a piece of music and interpret it in their own way, mold-
ing and varying the emotional expression of the piece by subtly changing performance
parameters. Parametric dimensions include timing, dynamics, articulation, and the use
of devices like sustain pedals for piano. Studying such expression patterns has long been
of keen interest to musicians, educators, and researchers, and it presents a compelling
inquiry into exploring whether such intricate expressions can be accurately encapsulated
and replicated using computational systems [1]. The accurate replication of human musical
expression through machines not only bridges the gap between traditional and technologi-
cal approaches to music but also opens new avenues for interactive performances [2] and
music education systems [3]. Leveraging such technology can enhance musical training,
allowing students and professionals alike to experiment with and learn from dynamically
generated expression, thus broadening both creative perspectives and educational methods.
In this paper, we aim to render such an expressive performance of a piece of music from its
score, using a machine learning model. We propose DExter, a diffusion-based expressive
performance generator that predicts expression parameters conditioned on a score. In
addition, we investigate whether the rendering process can also be conditioned on desired
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high-level performance characteristics in the form of mid-level perceptual features [4,5]. In
this way, we are permitted to control the general performance character, as well as explore
the potential of a style transfer within the varied space of human expressive performances.

Building upon the foundational studies in expressive performance rendering, signif-
icant strides have been made in transitioning from traditional sequence-modeling tech-
niques, such as RNNs and LSTMs [6], to the incorporation of variational autoencoders
(VAEs) [7]. A persistent challenge in this domain is the accurate and dynamic represen-
tation of musical expression over time, particularly in capturing the subtle and complex
interplay between different performance parameters that evolve throughout a piece. In this
context, we leveraged the diffusion processes to capture the nuanced temporal fluctuations
of expressive performance parameters. By employing a novel conditional architecture
within the diffusion framework, DExter enhances the transferability of expressive nuances
from a source to a target performance, thereby enriching the model’s applicative potential
in both performance reproduction and real-time interactive systems.

This paper offers three contributions (project demo page with examples: http:/ /bit.ly/
4alxslx (accessed on 22 July 2024); the code is available at https:/ /github.com /anusfoil /
DExter (accessed on 22 July 2024)): (1) we propose a diffusion-based method for learning
and conditioning the expression parameters in Western classical solo piano performance;
(2) we conduct a comprehensive quantitative evaluation of the rendered outputs, along
with other renderers, in the literature (re-trained to make for a fair comparison), taking into
account multiple expressive dimensions such as asynchrony and articulation; and (3) we
explore mid-level conditioned generation and style transfer with our model, conducting an
experimental study on the conditioning effects.

2. Related Work
2.1. Expressive Performance Rendering

Expressive performance rendering has long been a challenge for music information
retrieval (MIR) research. While the role of machine learning in such a task was recognized
early on [1], several rule-based methods have been proposed and investigated over the
years [8-10]. Early experiments in deep-learning-based performance rendering [6,11,12]
used traditional sequence modeling architectures like RNNs and LSTMs with modifications
focusing on the music hierarchy and score features applied as inputs. Recently, transformer-
based systems [13,14] have been proposed for controllable rendering, predicting different
aspects of performance, such as the shape of expressive attributes [13] and performance
direction markings in a score [14]. All the above systems predict descriptors designed
to capture expressive aspects of musical performance, typically tokens representing local
tempo and timing deviations. However, such tokenized and quantized encodings of
performance parameters are not lossless, and they can result in a large vocabulary to
train [7].

Regarding the evaluation of performance-rendering systems, there has been growing
criticism of the practice of evaluating against a single ground truth and ignoring the varia-
tions in interpretations [15], as reconstruction-based error analysis has inherent limitations
to fidelity and diversity [15,16]. To mitigate this problem, we evaluated the rendered per-
formances with respect to a multitude of performance-parameter dimensions and against
multiple different human interpretations.

2.2. Diffusion Models in Music

Diffusion probabilistic models (DPMs) generate data by inverting a Markovian data
corruption process. DPMs have demonstrated impressive results, first in the vision domain
by generating text-controlled images [17], and then also in the audio domain, with the most
promising applications involving the generation of high-fidelity audio samples [18,19] and
the synthesis of speech [20] and music [21].

Symbolic music, however, seems to be a more challenging target for DPMs—the chal-
lenge is to fit their probabilistic formulation into discrete data distributions.
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Mittal et al. [22] train continuous DDPMs (denoising diffusion probabilistic models) on
sequences of latent MusicVAE [23] embeddings in order to achieve the generation of mono-
phonic melodies. Plasser et al. [16] build upon the MusicVAE-like token representation
and directly apply discrete denoising diffusion probabilistic models (D3PM). Another
representation suitable for learning symbolic music [24] under the DPM framework is the
piano roll: Cheuk et al. [25] managed to transcribe music by generating a piano roll using
an audio spectrogram as a condition. Min et al. [26] also achieved piano roll generation
with more diverse control, such as infilling the music context and the high-level guidance
of chords and texture.

Our work places music DPMs into a niche spot: while the rendering is applied to
symbolic data (discrete notes), DExter predicts continuously varying expressive parameters
that are then applied at the note level. The generation of continuous expressive parameters
facilitates the fine-grained control of the performance parameters of each note without the
reverse diffusion process having to learn a quantized representation space.

3. Methodology

In this methodology section, we begin with our input, codec representations—specifically
the score codec (s_codec), performance codec (p_codec), and perceptual features codec
(c_codec)—formatted as two-dimensional, spectrogram-like matrices. These codecs, de-
tailed in subsequent subsections, serve as the foundational input and output representations
that facilitate the precise handling of musical scores and expressive parameters within a
deep learning framework. Following this, we describe our diffusion process, selected for
its capability to effectively model the complex, continuous dynamics of musical expres-
sion through advanced forward and reverse transformations. Completing the section, we
elaborate on the architecture and conditioning strategies of our model, which are centered
around a robust 2D UNet architecture. This setup is enhanced by a joint conditioning layer
that integrates score and perceptual information, enabling the system to generate nuanced
and dynamically expressive music. Each of these components is detailed in dedicated sub-
sections, providing a comprehensive overview of our approach to tackling the challenges
of expressive music performance rendering.

3.1. The Codecs

We represent score information (note onset, duration, pitch, and voice), performance
parameters (beat period, velocity, timing, articulation ratio, and pedal), and mid-level
perceptual features (melodiousness, articulation, rhythmic complexity, rhythmic stability,
dissonance, tonal stability, and minorness) as two-dimensional, spectrogram-like matrices
of (mostly real-valued, except for the score codec) numeric values. We call these the score
codec (s_codec), the performance codec (p_codec), and the perceptual features codec
(c_codec), respectively. The task of our diffusion model is to predict a p_codec conditioned
on the s_codec and c_codec. Detailed descriptions of the composition of the codecs are
given in Section 4.1.

3.2. Diffusion Framework

We frame the expression-rendering problem as the task of learning a continuous space
of performance expression parameters, as shown in Figure 1. Diffusion models [27] consist
of two processes: (i) a forward process that transforms each data sample into a standard
Gaussian noisy sample, step by step, with a predefined noise schedule; and (ii) a reverse
process in which the model learns to denoise pure-noise inputs gradually, generating
samples from the learned training data distribution. In effect, our model aims to convert
Gaussian noise x; into a posterior performance codec, %), conditioned on a score codec,
cs := s_codec, and a perceptual features codec, c. := c_codec.
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Figure 1. Training (left) and inference (right) phases of the diffusion framework. Training starts with
p_codec and corrupts the xq by injecting noise; the UNet model takes in the corrupted conditions
of x¢, ¢s and c., to predict the injected noise, which is then used to reconstruct £3. The loss is
calculated for both noise prediction and p_codec reconstruction. The inference process (right) starts
with a random sample from N (0,I); the model iteratively predicts the noise and reconstructs %,
conditioned on the same c¢; and c.. Alternatively, for transferal, we initialize the process from another
performance, yg, corrupting it for ¢y steps and denoising for the remaining T — t steps.

The diffusion forward pass g(x:|x() produces a probability distribution of progres-
sively noisier versions of the performance codec, conditioned on the original. With the
noisee € N’ (0, I) sampled from a standard Gaussian distribution, we blend it with the
input sample xg, using B as a scaling factor intended to ultimately achieve a zero mean
and unit variance of the fully noised result. Specifically, the sampling process applies a
linear noise schedule with g € [0.0001,0.2]. As we would like to perform multiple steps
simultaneously, reparameterization is applied to derive a closed-form equation, given that
ap=1-— ;Bt and & = H;:l Ks.

xt = Vg + /1 — ke 1)

During training, model fy(x¢,t, cs, ¢c) learns to predict the injected noise &y, given a
random timestep, t, and its noised codec version, x;, calculated in the forward pass. t is
sampled from [1, T]; we used T = 1000 in our experiments. Then, we use the predicted noise
€y to reconstruct the predicted initial codec £y by inverting Equation (1). The parameter T,
or the time interval limit, significantly influences the granularity and smoothness of the
denoising process. A higher T allows for a more gradual denoising process, potentially
capturing more subtle nuances in the data as it iteratively approximates the clean state.

The training objective combines noise estimation and codec reconstruction, as shown
in Equation (2). Although theoretically, noise prediction alone could suffice to train the
model, the empirical results demonstrate that adding a constraint to the reconstructed
codec significantly improves performance. We use a weighting factor, 1 = 0.2, derived
empirically, to balance the emphasis between accurate noise prediction and fidelity in codec
reconstruction, optimizing both the precision of the generated output and the stability of
the learning process.
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During inference, we start from a Gaussian noise distribution, p(x¢) ~ N (0,1), and
iteratively generate the codec posterior through pg(£_1|xt, ¢s, cc) = N (pg s (xt,t,Cs,Cc), (thl)
until £ is reached. As the model fy estimates noise &g, we use it to construct the model
mean g, and the posterior variance o7 is predetermined according to the noise schedule.
The full construction of model mean and posterior variance is given in Equations (3) and (4):

ot = |4 o A=) ®

1—a;4

of = (1w T

4)

3.3. Architecture and Conditioning

We employed a 2D UNet as the backbone of our architecture; the detailed layer and
insertion structure can be found in Figure 2. The conditioning on score information and
perceptual feature information is enforced by a joint conditioning layer that projects the
score dimensions and perceptual dimensions (5 and 7, respectively—see the definition of
codecs below) onto 512 dimensions. The diffusion timestep ¢ is encoded via sinusoidal
position embeddings. The input codec and the conditioning codecs are downsampled and
upsampled through ResNet blocks and 2D convolutions. Attention layers are interleaved
at bottlenecks.
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Figure 2. Diagram of the UNet conditioning module in the network.

Before narrowing down on the above-described architecture, we experimented with a
DiffWave-based architecture [18] that uses a series of 12 residual layers of 1D convolution.
For conditioning, we also experimented with FiLM [28,29], which yields comparable results
to the UNet model. We found that our present architecture provides the best trade-off
between model simplicity and performance.

Classifier-free guidance (CFG) [30] is widely used for conditioning diffusion models
to achieve controllable generation, and we also adopted it. During training, a dropout
layer is applied to the conditions c; and ¢, to randomly mask out the conditions with
probability p in order to simultaneously train the conditional model, fy(x¢, ¢, ¢s, cc), and the
unconditional model, fy(x¢,t). Based on preliminary experiments, we chose a fixed dropout
probability of p = 0.1 for our training to optimally balance learning from conditioned data
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while maintaining the ability to generate coherently without specific conditioning cues,
enhancing model generalization. In inference, a weight parameter, w, is applied as the
guidance scale to a combined prediction.

é=wé(xi,t)+ (1 —w)é(xyt,cs,cc) (5)

4. Data, Representation, and Processing
4.1. Input and Target Encodings

The performance codec (p_codec)—our prediction target—was originally proposed in
the expressive rendering framework Basis Mixer [11], in which four expressive parameters
are computed for each note, 1, appearing in the score. These parameters of the p_codec
encoding the expression controls modify the properties of notes in a MIDI piano perfor-
mance, thus changing the speed and loudness of the performance with time. Combined
with score information, the full expressive performance can be reconstructed in a lossless
fashion. We expanded the original Performance Codec v.1.0 [2,11] by defining an additional
parameter for sustain-pedal control. The resulting five (note-wise) performance parameters
are as follows:

*  Beat period: The ratio of the inter-onset intervals (IOIs) between two consecutive
notes of the performance and the score. This parameter is computed for each onset,
ok, instead of each note, n,-} It isfdeﬁned as follows:

sperf  sper,
(1) = ELG = St where
seconds, corresponding to score onset oy in beats, calculated as the average onset time
of all notes played at score onset position oy.
vel(n;)

*  Velocity: xy(1;) = =57+, where vel is the MIDI velocity of a played note.

is the actual performed onset time, in

o Timing: X, (11;) = At(n;) = 6PF (n;) — onset(n;), the average onset time of all notes
played at the score onset position (used in beat period), minus the performance onset
time of n;. The beat period is taken as the ‘tempo grid” notion [31]; timing would then
refer to the micro-deviation of each note relative to the grid.

__dutT ()

= dur(m;) xp,(n;)”
note duration that is actually played.

e Pedal: xp(n;) = pefz(; J where ped(n;) is the discrete MIDI pedal value at the onset
of n;. Note that pedal encoding is not lossless since changes in the value between note

onsets will not be captured.

*  Articulation ratio: x,(n;) which measures the fraction of the expected

The p_codec is fully invertible in that the full event information from the MIDI file
[Pitch, Onset, Duration, and Velocity] can be reconstructed, given the p_codec and
score s_codec.

The score codec (s_codec) represents the musical score, and it is derived from the
note array from the partitura package [32]. Aligned with the p_codec at the note level, it
contains four score parameters for each note: (notated) Onset, Duration, Pitch, and Voice,
resulting in a 2D matrix of dimension 4 x #n, where n is the number of notes. The score is
indispensable for performance conditioning, as it defines the musical content of the piece.

The perceptual features codec (c_codec), which we use as a steering input for perfor-
mance generation, is a representation of the so-called mid-level perceptual features [4], namely
melodiousness, articulation, rhythm complexity, rhythm stability, dissonance, tonal stability, and
"minorness’ (or mode). They describe musical qualities that most listeners can easily perceive.
Taking a cue from previous research [5,33] showing that these features effectively represent
musical factors underlying a wide range of emotions and capture variations in the expres-
sive character between different performances of a piece [34], we incorporated these as the
performance-steering inputs. In our scenario, these features are calculated via a previously
trained specialized model [5] over the recorded audio performance data of the Vienna4 x22,
(n)ASAP, and ATEPP datasets (see Section 4.4). The values are calculated from successive
overlapping 15-s windows with a hop size of 5 s. Each computed window is then aligned
with the score note array to be broadcast into c_codec, a 2D matrix of dimension 7 X n.
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4.2. Processing

Given that there could be slight variations in each performance (missing and extra
notes relative to the score), we performed padding based on the score note array so that
each pair of performances was perfectly aligned. To accommodate pieces of different
lengths, we trained our network on segments of N notes in which shorter segments were
padded. In our experiment, we used N = 200 (which corresponds to about 10 to 20 s of
music, depending on the tempo and note density).

4.3. Mixup Augmentation

Mixup [35] is a data augmentation scheme that regularizes a network to favor simple
linear behavior between training examples. To strengthen our model’s ability to model
different interpretations, we fused p_codec pairs x1 and x; (codecs representing two differ-
ent performances of the same piece) and their corresponding c_codec using Equation (6),
where A is a scaling factor with a variance of [0, 1].

x12 = Axp + (1= A)xz (6)
After the mixup augmentation, our dataset consisted of 170k segments; the interpolated
data were only used in training.

4.4. Datasets and Training Setup

We used three datasets of expressive performances (from the Western classical music
solo piano repertoire): Vienna4x22 [36], (n)ASAP [37], and ATEPP [38]. Each dataset
includes audio, performance MID], a score in MusicXML format, and their alignment.
Information and a comparison of these sets can be found in Table 1. The training was based
on ATEPP and 80% of the (nN)ASAP and Vienna4 x22 data, while the testing set (used in
all subsequent experiments in Section 5) contained the remaining 20% of (n)ASAP and
Vienna4 x22 data. The latter two datasets were recorded on computer-controlled grand
pianos and are, thus, more accurate and precise than the ATEPP data, which were obtained
through curated audio transcription. While these datasets provide comprehensive coverage
of certain composers and styles within the Western classical tradition, further validation
would be beneficial to determine their applicability to a broader range of composers and
musical styles not represented in the current dataset collection.

For the training of the network, as mentioned in Section 3, we used the Adam optimizer
with a learning rate of 5 x 107, and we employed early stopping with a patience of
50 epochs.

Table 1. Overview of datasets used in experiments.

Dataset Pieces  Performances Duration MIDI Repertoire

Excerpts from four pieces by F. Chopin
. . (Op. 10 No. 3 and Op. 38), W. A. Mozart

Vienna4x22 [36] 4 88 2h 18 min recorded (KV331, first mov.), and F. Schubert (D. 783
No. 15)

(n)ASAP [37] 235 1067 94 h 30 min Recorded Common Practice Period solo piano works
by 15 composers

ATEPP [38] 1580 11,677 1000 h Transcribed S0\ Piano works by 25 composers, ranging

from the Baroque to Modern eras

5. Evaluation

In this section, we present a quantitative evaluation of generated performances with-
out and with steering, followed by an evaluation of the performance transfer and an
investigation into the effect of varying the conditioning weight. Finally, we also describe
our qualitative study, employing a listening test and human participants, and we present
the results.
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5.1. Quantitative Evaluation

In this subsection, we evaluate our generated samples’ expressiveness by compar-
ing core expression attributes with ground-truth performances. This experiment was
conducted using the aforementioned testing set, with the condition of s_codec and audio-
performance-inferred c_codec as described in Section 4.1. With respect to the critique of
reconstruction-based evaluation [15], we compared the results with various interpretations
of ground truth (the testing set consisted of about 5.3 human performances for each piece,
on average).

5.1.1. Assessed Attributes

The expression attributes we assessed were derived from the tempo and velocity
curves (joint-onset level), joint-onset asynchrony, articulation, dynamics, and pedaling.
While a detailed documentation of the selected attributes can be found on the project page,
we provide a summary below.

*  Tempo curve: Onset-level tempo (inverse of local inter-beat intervals), with values
averaged across notes at the joint onset (tem_curve).

*  Velocity curve: Onset-level velocity, with values averaged across notes at the joint
onset (vel_curve).

¢ Asynchrony: The absolute difference in seconds between the earliest and latest notes
in a joint onset (asy.delta). We also measured the pitch correlation (asy.p_cor) be-
tween the pitch and micro-timing within the joint onset, inspired by the melody lead
phenomenon [39].

e Articulation: The key overlap ratio (art.kor) [40], measured at each note transition; the
overlap time (or gap time if staccato), divided by the IOI between the two notes.

e Dynamics: Comparing the performed velocity and score marking (f, p, etc.) and
measuring their agreement (dyn.agr) and consistency (dyn.con), as proposed by Kosta
et al. [41]. We also propose ramp correlation (dyn.r_cor) for changing markings (hair-
pins) since Kosta et al. [41] only worked with constant markings. Ramp correlation
computes the amount of agreement between the performed velocities with respect to
their cresc. or decresc. ramps, if the markings exist.

¢  Pedals: We measured the sustain pedal value at the note onset (ped.onval). Actually, a
sustain-pedal change is a continuous stream of values, and changes in pedal position
often happen between note attacks; however, sampling at the note onsets simplifies
the computation and allows for a consistent assessment across models.

5.1.2. Metrics

For each expression dimension, we measured three metrics between the generated
performance and the ground-truth space.

Standard-deviation multiple: This metric computes the deviation of an attribute of
the rendered output from the mean of multiple human performances on a beat-level basis.
Different from absolute deviation, this measure incorporates the flexibility of interpreta-
tions: when human interpretations already contain large differences, a larger discrepancy
can be tolerated. But if human players tend to agree on the interpretation, we would expect
the rendered output to fit more closely to ground-truth values. Additionally, we retained
the sign (direction) of deviation so that negative values indicate deviations in the direction
of slower-tempo or softer dynamics, for example.

KL divergence takes all the note-level or beat-level attributes, and it compares their
divergence with the ground-truth attributes as an overall distribution (note that the ground-
truth attribute distributions are aggregated from multiple interpretations). The KL di-
vergence is calculated by estimating the two distributions using Monte Carlo sampling
(N = 300) and computing the relative entropy between them.
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Pearson’s correlation is measured between the feature sequences of generated and
ground-truth performances. In contrast to the previous two metrics, this metric captures
the time-varying similarity between the performance attributes.

5.1.3. Results

In Table 2, we compare our model with the samples from two existing performance-
rendering systems: BasisMixer [11] (BM) (we applied the Basis Mixer model with LSTM
architecture trained on the ASAP corpus) and VirtuosoNet [12] (VN) (the applied model is the
sign with a default tempo and composer settings agreed on by the author). The results were
rendered using the same testing set as ours and shown as means and standard deviations.

Table 2. Quantitative expression metrics in the categories of articulation, asynchrony, dynamics,
pedaling, plus global tempo and velocity curves. The columns represent different models, and the
rows are divided into blocks according to the three different evaluation metrics, with each block
detailing the outcomes for all features. Note that each generated performance was compared with
multiple human ground-truth interpretations. —0 means a value close to 0 is better. | indicates a
lower value is preferred while 1 is otherwise. The numbers in bold are the best performance on
the metric.

Basis Mixer [11] VirtuosoNet [12] DExter (Ours)

Deviation Multiple (—0)

articulation.key_overlap_ratio 0.62 £ 3.15 1.92 £2.72 224 +276
asynchrony.pitch_correlation —-1.19 £ 1.41 —1.67 = 1.25 —1.17 = 1.66
asynchrony.delta 4.10 = 1.78 4.38 = 1.63 443 +£2.21
dynamics.agreement —0.07 £1.33 —0.40 £ 1.30 —0.002 £ 1.05
dynamics.consistency —0.67 - 1.64 —1.07 = 1.56 0.73 £2.21
dynamics.ramp_correlation —0.36 £ 2.54 0.65 +1.96 —0.28 + 2.44
pedal.onset_value - —1.16 £1.68 —-1.39 £2.13
tempo_curve —0.10 = 2.44 0.52 +2.48 0.72 £ 2.65
velocity_curve —0.67 £1.48 0.15 £+ 1.02 1.48 +2.12
KL Divergence ()

articulation.key_overlap_ratio 0.92 £+ 2.15 1.66 £ 6.89 1.64 £+ 3.63
asynchrony.pitch_correlation 0.14 £ 0.278 0.13 £1.25 0.20 £0.33
asynchrony.delta 4.04 £5.15 4.83 £9.58 1.29 + 3.16
dynamics.agreement 0.10 = 0.04 0.09 = 0.04 0.06 &= 0.04
dynamics.consistency 0.12 +-0.23 0.06 &= 0.07 0.28 - 0.49
dynamics.ramp_correlation 1.54 +5.43 0.35 £ 1.01 042+1.13
pedal.onset_value - 034 £1.45 0.33 £0.36
tempo_curve 0.98 £+ 2.55 0.65 £ 1.86 1.26 £ 5.66
velocity_curve 0.16 = 0.21 0.10 £ 0.06 0.71 £+ 1.37
Pearson’s Correlation (1)

articulation.key_overlap_ratio —0.01 £0.13 0.05 £ 0.16 0.11 £+ 0.17
asynchrony.pitch_correlation 0.33 £0.25 0.55 £ 0.17 0.57 £ 0.25
asynchrony.delta 0.17 £0.22 0.29 £+ 0.19 0.28 £ 0.21
dynamics.agreement 0.02 - 0.87 0.04 £0.84 0.11 4 0.79
dynamics.consistency 0.92 4 0.17 0.914+0.13 0.92 4 0.15
dynamics.ramp_correlation 0.04 £ 0.76 0.12 +0.80 0.14 +0.73
pedal.onset_value - 0.01 £0.13 0.02 +0.14
tempo_curve 0.02 £0.13 0.09 £+ 0.19 0.19 £+ 0.17
velocity_curve 0.08 +0.23 0.21 +0.27 0.27 £+ 0.23
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Overall, DExter showed commendable results, particularly in correlation across al-
most all performance dimensions, especially in capturing the global curve of tempo and
velocity. This latter effect (learning the overall musical shape) could be attributed to the
diffusion model predicting the time-varying codec in one pass, in contrast to autoregressive
approaches. However, it is evident that DExter has room for improvement in terms of devi-
ation and divergence: DExter’s outputs demonstrate more volatile changes in parameters
that are less smooth than other renderings.

Meanwhile, each model exhibited distinct strengths across various performance di-
mensions. BM’s outputs had an articulation closer to human ground truths, and this can be
attributed to BM being more conservative in its use of expressive devices, using smaller
deviations from the mechanical reproduction of a score. VN also excels in modeling the
dynamics in agreement with score markings. It is also notable that both models with sustain
pedal prediction did a poor job in mimicking human pedaling techniques, with almost no
time-wise correlation, and on average, they were one standard deviation away from the
gound truth. Another area where all models struggled was asynchrony time (asy.delta:
~four deviations away from the human benchmark), highlighting the need to refine the
micro-timing aspect in performance-rendering models.

While different models may exhibit varied performance levels with specific types of
compositions, DExter is designed to handle a broad spectrum of inputs. The differences in
performance metrics reflect the diverse interpretative approaches that each model embod-
ies, illustrating that the evaluation of music-performance-rendering models is not solely
about surpassing benchmark metrics but also about enriching the diversity and depth of
musical expression.

5.2. Expressive Steering with Perceptual Features

Our framework of conditioned performance generation allowed us to explore the
conditioning of the performance generation using additional features. As described in
Section 4.1, we used mid-level perceptual features (encoded as c_codec) as steering inputs
to guide the expressive character of the generated performance.

To gauge DExter’s sensitivity to changes in these features, we used the perceptual
feature recognition model of [5] as a proxy for human perception. However, as that model
had originally been trained on an audio input, we wanted to eliminate the effect of acoustic
artifacts introduced by rendering MIDI to audio; we decided to fit a MIDI-to-perceptual-
features model to serve as the proxy instead. Details on this proxy model are given in
Appendix A.

Steering performance generation is achieved by manipulating the individual dimen-
sions of perceptual features, aiming to induce measurable corresponding effects in the
resulting outputs. For each test sample and across all seven perceptual attributes, we first
generated performances using the unmodified target c.. These target perceptual-feature
values could be randomly initialized in practice or derived from an actual performance. We
took the feature values derived from actual performances and modified the values to steer
the generation, in particular expressive directions, thus generating "alternate’ performances
of the original performance. We either halved one feature, %cc, or doubled one feature, 2¢.,
at a time.

Figure 3 displays the proxy model’s predictions of the generated outputs. We observed
that, for the first four features melodiousness, articulation, rhythm complexity, and rhythm sta-
bility, the adjustments applied to the input conditions manifested as anticipated directional
changes (the c. goupie group led the c. ¢ group at 12.2% in terms of their absolute values),
providing evidence of the model’s responsive behavior to the controlled feature alterations.
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The other three dimensions—notably, dissonance—exhibited less consistent patterns
in alignment with the input modifications. That seems reasonable, as harmonic and
tonality-related properties are more functions of a piece itself, rather than any specific
interpretation of it.
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Figure 3. Steering the expressive characteristics of generated performances using mid-level features
(c_codec; see Section 4.1) for conditions. For each piece, a performance is generated with the c_codec
derived from an actual performance of the piece, and two further performances are generated with one
of the mid-level features doubled (2x) or halved (0.5x). The average difference between the halved
and unmodified conditions, and between the doubled and unmodified conditions, areplotted here.

5.3. Transferring from a Source Performance

As suggested by Liu et al. [42] and Zhang et al. [43], a style transfer can be achieved
in a diffusion framework by using, as a starting point for generation, a shallowly noised
version of the source information. Given the large amount of music overlap in our datasets,
we could test this by forming data pairs that consisted of two interpretations of the same
piece to be used as the source and target p_codec in this experiment.

Given a source performance codec, x5, we calculated its noisy version, x;,, with a
predefined time step, tp < T, according to the forward process shown in Equation (1). By
using xy, as the starting point for the reverse process of a pretrained model, we enabled
the manipulation of performance xs, with a target mid-level condition and a shared score
condition, ¢(s 41y, in a shallow reverse process, Po(Ro:t, |xty, C(s,tgt) ), as illustrated in Figure 1
(top right). With the transfer experiments, we attempted to understand the following
two questions:

1. Does transferring help with the final generation quality compared with rendering
from scratch?

In the transfer experiment, we combined pairs of ground-truth performances of the
same piece segment, Xsc, Xtgt, where ssre = Sior. The same testing set as that used in the
previous sections was used, and the source performance was randomly taken from the
ground truth. We experimented with different transfer steps of ty € {T, %, %, %}, and we
reported the global metrics of the tempo curve and velocity curve with their deviation
and correlation.

What we observed in Table 3 was that transferring from a source performance slightly
helped with initialization. Specifically, employing a denoiser for three-quarters of the
diffusion steps—ideally preserving around one-quarter of the source’s characteristics—
yielded the highest-quality outcomes. However, the transfer quality did not steadily
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improve with the retained information from the source: the %-step transfer resulted in
ambiguous outputs that did not align well with the given score.

Table 3. Deviation and correlation of test set relative to ground-truth space (same analysis as in
Section 5.1) of tempo and velocity curves. | indicates a lower value is preferred while 1 is otherwise.
The numbers in bold are the best performance on the metric.

t dev: tem ({) dev: vel () cor: tem (1) cor: vel (1)
T 0.72 + 2.65 1.48 £2.13 0.19 + 0.17 0.27 £0.23
% 0.68 + 2.55 1.40 £ 2.16 0.19 £ 0.16 0.28 + 0.21
> 0.74 +£2.49 1.33 £+ 2.10 0.15 £ 0.17 0.21 £0.22
% 0.87 + 2.69 1.50 £ 2.11 0.11 +0.16 0.18 £ 0.21

2. Does a transferred rendering sound ‘closer’ to the source or the target?

We wished, similar to Section 5.2, to measure the transfer proximity using the pre-
dicted perceptual features. The radar plots in Figure 4 show the seven perceptual feature
dimensions predicted via the proxy, illustrating the perceptual distance between the source,
target, and generated performance for three different transfer gradations, %, %, %. At %
steps, the predicted performance deviated from both the source and target, which fit our
previous observation that insufficient denoising steps result in ambiguous outputs. As the
transfer step increases, there is a discernible shift in the predicted output towards the target

profile across most perceptual dimensions.

frac=0.25 — Target frac=0.5 frac=0.75
AR Source AR AR
—e— Output 1 |
TS ]| TS DI TS DI
|
R E R E R E
R S | R - | R |

Figure 4. Seven dimensions of perceptual features (AR: articuation; RC: rhythm complexity;
RS: rhythm stability; TS: tonal stability; DI: dissonance; MI: minorness; and ME: melodiousness)
predicted using the proxy for the output, source, and target, averaged across the testing set. The three
plots correspond to the transfer steps of 0.25T,0.5T,0.75T.

5.4. Ablation: Effect of Varying Conditioning Weights

In this ablation experiment, we looked at the effect of the conditioning weight w on the
generated results. As described in Section 3.3 and Equation (5), the scale of classifier-free
guidance, w, is the ratio that combines the prediction with and without (masked by 0) the c,
and ¢, conditioning. While the conditional and unconditional models were jointly trained in
the training phase, the weighting parameter w was only introduced in the sampling phase,
and the optimal w was not trivial to find. In Table 4, conditioning weights w = 0.5,1.2,2,3
are compared, while the other settings are the same as in Section 5.1. The experimental
results were best for w = 1.2. The experiments from the ablations justified that w = 1.2
is around the best weighting that generates musically sound output. Interestingly, with
a greater scale of classifier guidance, the generative results exhibit larger fluctuations in
expressive parameters and less stability.
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Table 4. Deviation and correlation of test set relative to ground-truth space (same analysis as in
Section 5.1) of tempo and velocity curves. —0 means a value close to 0 is better. |. indicates a lower
value is preferred while 1 is otherwise. The numbers in bold are the best performance on the metric.

w dev: tem () dev: vel (—0) cor: tem(1) cor: vel (1)
0.5 1.11 = 2.46 —247 £1.10 0.11 £0.16 0.02 £0.22
1.2 0.72 £+ 2.65 148 +2.12 0.19 + 0.16 0.28 + 0.21
2 1.33 £237 3.02 +1.53 0.04 £0.15 0.13 +£0.24
3 1.86 + 1.81 4.63 £1.15 0.04 £0.14 0.10 £0.23

5.5. Qualitative Study

We evaluated the naturalness and expressiveness of the rendered performances
through a listening test. For samples from eight selected pieces, we compared the following:
(1) two human performances with relatively distant interpretations; (2) renderings made
with Basis Mixer and VirtuosoNet, as described in Section 5.1; and (3) a rendering from the
proposed model, DExter. The performances (including the ground truths) were rendered
to audio using a Yamaha Disklavier, which produced similar pedal/articulation-related
artifacts in both the human and machine performances. Eighty-two participants listened
to the performances and evaluated them on a 100-point Likert scale, rating the overall
naturalness and expression of the output as one score. The performances used for the test
can be found on the demo page.

The results of the listening test, shown in Figure 5, provide a nuanced view of the
performance-rendering capabilities of the models in comparison to the ground truth.
In terms of the mean rating, DExter demonstrated better performances of the pieces by
Chopin, even sometimes comparable to the ground truth (Barcarolle). However, they were
outperformed via Basis Mixer or VirtuosoNet in the case of older compositions (Bach’s fugue
and Beethoven’s sonatas). Overall, in terms of the mean rating scores, there was still a gap
between the generative outputs and GT (51.81), while DExter (48.54) slightly outperformed
VirtuosoNet (48.31) and Basis Mixer (46.33). It was also surprising to observe that GT did
not always secure the highest ratings. In the case of Chopin’s étude, at least, it might be
explained by the fact that human pianists suffer from physical limitations in technically
demanding passages, while the generative models do not.

Classical listeners (>=3 yrs) (N=70)

0 i i
i 0 B
H GT
I VirtuosoNet
B Basis Mixer
Il Dexter

0 NN ——

General (0-3 yrs) (N=12)

Rating
N
o

N
o

80

260 L | J_ J. |

= 0 N GT

x B VirtuosoNet
20 B Basis Mixer

N Dexter
0 NN —— 2
A aro\e 333 es 99—

P gudes emove“ Szxaa\\a o ehov ch p\“a arc?’ Gach Fug“e 0B aa\\adsGh pert 8

Figure 5. Mean ratings for the eight pieces evaluated in the listening test for each model and human
(ground-truth, GT) performances.
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Besides the numerical ratings, we also asked three musically trained participants for
explicit feedback on their ratings. In addition to some positive comments, we also received
quite specific and useful negative feedback, such as (specifically referring to polyphonic
music, such as that of Bach) no clear voicing among the lines and poor balance between the hands.
Given currently dominating ‘flattened” representations, such as our p_codec or tokens
in transformer models, learning the vertical structure of music remains a challenge for
rendering models [24].

6. Conclusions and Future Work

In concluding this study, we observe that we have introduced DExter, a novel diffusion-
based model adept at learning and controlling performance expression in solo piano
music. This model not only matches the quality of existing systems in terms of expressive
characteristics but also extends the capability of style transfer and nuanced expression
conditioning using perceptual features. However, the current implementation of DExter
reveals several limitations that must be addressed. The inference speed, for instance,
requires 40 s to process a 95-s piece, which may impede real-time application viability.
We plan to explore acceleration techniques such as denoising diffusion implicit models
(DDIMs) or embedding the process in a latent space to enhance computational efficiency.

Further, while DEXxter effectively handles the styled performance transfer and per-
ceptual conditioning, its reliance on highly specific codec representations could limit its
generalizability across different musical genres or instrumental configurations. Future
iterations could benefit from integrating a broader array of conditioning inputs, such as
textual descriptions or broader acoustic features, which might enable the model to adapt
more flexibly to varied musical contexts and styles. These adaptations could pave the
way for DExter’s application beyond solo piano music, potentially in ensemble settings
or for other instruments, enriching interactive music systems and supporting creative
musical compositions.

Such expansions could not only address the limitations noted but also broaden the
impact of our research within the music technology field, offering new tools and method-
ologies for researchers, composers, and performers alike.
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Appendix A. MIDI-to-Perceptual-Features Model

The MIDI-to-perceptual-features model was used as a proxy for human mid-level
perception in the experiments described in Sections 5.2 and 5.3. It takes in a rendered
MIDI and outputs seven-dimensional perceptual features for each window of 15 s. The
specifications are as follows.

¢ Data: The data used to train this oracle were ASAP performance MIDI, along with the
audio-perceptual features computed and predicted from ASAP performance audio
via the mid-level feature recognition model of [34] for 15-s windows.

¢ Representation: Each 15-s MIDI window was transformed into a piano-roll matrix
of dimension 800 x 131 (128 pitches + 3 pedal channels), with MIDI velocity as a
matrix value.

*  Architecture: The network consists of two residual blocks, each containing two con-
volution layers. A final projection layer was attached at the end to output the seven-
dimension perceptual features.

e  Training: An Adam optimizer with a learning rate of 1 x 1072 was used. After
20 epochs, the training converged with a validation loss of 0.038.
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