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ABSTRACT

The study of piano rehearsals can offer interesting in-
sights into the strategies adopted by a pianist in order
to learn, interpret and eventually perform musical pieces.
The analysis of rehearsal processes requires computational
methods that differ from those used for piano performance,
due to challenges like mistakes, repetitions of musical seg-
ments, or forward and backward skips to sections in the
piece. The scarcity of publicly available rehearsal data
limits the empirical understanding of these challenges.
We release the Rach3 MIDI Dataset, an openly available
collection of MIDI files containing more than 750 hours
of recordings of piano rehearsals and corresponding Mu-
sicXML scores by four pianists (3 advanced, 1 beginner),
collected over a period of more than 4 years. This dataset
records the progression of pianists learning new repertoire,
as well as practicing familiar pieces, all in the Western
Classical tradition. We describe the rehearsal piece iden-
tification process used for automatically labeling a portion
of the data in this release. Furthermore, we use the Rach3
data to highlight several challenges and future research di-
rections pertaining to the computational analysis of piano
rehearsals, specifically symbolic rehearsal-to-score align-
ment, rehearsal structure analysis, and automatic mistake
identification.

1. INTRODUCTION

Computational analysis of music performance has tradi-
tionally focused on the end product, that is, the outcome
of a rehearsal process, rather than rehearsal itself. Yet
musicians spend substantial time on rehearsal. Analysis
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of rehearsal has the potential to improve understanding of
music learning and expertise development and support the
development of pedagogic tools. We define rehearsal as
goal-oriented, systematic practice with the aim of learn-
ing and becoming proficient in playing specific repertoire.
While the same families of music analysis approaches are
applicable for data from either performances or rehearsals,
rehearsal data poses specific challenges that are not present
in polished performance. The most notable examples are
the presence of mistakes, jumps between different parts
of a piece, and non-compositional repetitions (i.e., playing
the same passage repeatedly).

To date, research on music rehearsal has been hindered
by a lack of data and appropriate computational tools. For
advanced musicians, rehearsal is a process that can span
months or years, and understanding that process requires
a longitudinal perspective, with data collected at differ-
ent stages. This paper introduces the Rach3 MIDI dataset,
which contains more than 750 hours of recordings of piano
rehearsals by four pianists, mostly involving music from
the Western classical tradition. The dataset allows for a
comprehensive and ecologically valid computational, data-
driven analysis of piano rehearsal over an extended period,
which has been limited in previous research due to tech-
nical constraints and data availability (cf., the scale and
scope of the studies by Chaffin and colleagues [1,2]). The
dataset will be made publicly available, and, to the best
of our knowledge, comprises the largest collection of pi-
ano rehearsal data. Existing symbolic datasets for analysis
of piano performance (e.g., (n)ASAP [3], Vienna 4x22 [4]
and Batik [5]), focus on polished performances.

The Rach3 MIDI dataset will contribute to rehearsal re-
search by enabling systematic study of rehearsal decisions.
As musicians develop expertise on their instrument, they
also develop more effective rehearsal strategies. Beginners
are more likely to repeat individual notes, whereas more
experienced musicians tend to repeat musically coherent
sections or measures [6]. Among musicians of the same
level, some organize their rehearsal sessions according to
learning goals, for example, focusing separately on tech-
nical challenges and musical understanding, while others
work in a more undifferentiated way [7]. Figure 1 shows



-

(a) Changing rehearsal structure across time for Pianist 1 rehears-
ing Rapsodia Mexicana No. 2 by Manuel Ponce. Rehearsal num-
ber indicated on the left.

(b) Variations of music segments A, B, and C within and across
rehearsals. Green: MIDI score reference. Blue: Performance in-
stances across rehearsals.

Figure 1: Evolution of practice structure across the different phases of learning a piece.

a pianist’s rehearsal structured into segments that reflect
changes in focus over time.

This paper describes data collection (Section 3) and
automatic labeling of rehearsal files using fingerprinting
methods (Section 4). We highlight limitations of state-of-
the-art symbolic performance-to-score alignment for per-
formance data (Section 5) and propose an alternative ap-
proach for rehearsal structure analysis inspired by pattern
discovery and music structure segmentation (Section 6),
including preliminary attempts at automatic conspicuous
mistake identification (Section 7). We conclude with fu-
ture research directions in the computational analysis of
piano rehearsals (Section 8). !

2. RELATED WORK

Research on music rehearsal has been sparse to date,
though a few studies have examined rehearsal behaviors
like decision-making, goal-setting, and practice strate-
gies [8-10]. Ericsson et al. highlighted the role of de-
liberate practice in achieving expertise [11]. Studies by
Hallam [12,13], Sokolovskis [14] and Chaffin [1,2,15-17]
investigated rehearsal through observations and retrospec-
tive accounts, tracking how practice strategies evolve over
time. The broader literature on musical learning has exam-
ined how different practice schedules affect memory for
pitch and timing [18, 19]. Some research has also investi-
gated how visual attention (eye gaze) is split between the
score and the hands during learning of piano pieces, and
how this is affected by the music structure [20].

Despite this, rehearsal remains understudied in a data-
driven way, with much of the literature based on case stud-
ies. As noted in Miksza’s review [9], no studies have in-
volved more than 40 hours of rehearsal recordings (see Ta-
ble 1 in [9]). This is partly due to technical and logistical
limitations in capturing long-term rehearsal data and the
lack of efficient algorithms to extract relevant information
and patterns from such a large source of data. Winters et

!'The dataset can be downloaded from the companion website
https://r3midi.rach3project.com/ where further examples
and visualizations are available.

al. [21] introduced an audio-based method for automatic
practice logging, to keep track of which pieces were per-
formed during a rehearsal session. Tools have also been
developed for the automatic quantitative assessment of per-
formance quality [22,23].

3. RACH3 MIDI DATASET

The Rach3 MIDI dataset contains over 3,000 MIDI files
from piano rehearsals performed mostly on acoustic pi-
anos equipped with systems to enable MIDI capturing.
The dataset aims to be representative of typical rehearsal
practices, ensure ecological validity by reflecting natural
rehearsal conditions, and remain comprehensive in scope
through diverse (i.e., multimodal) data sources for quanti-
tative and qualitative analysis [24]. The full Rach3 dataset
is a multimodal dataset that includes synchronized audio
(captured with microphones), MIDI, video from a camera
positioned over the keyboard, and written logs about prac-
tice strategies and focus. This paper focuses solely on the
MIDI data and other modalities will be addressed and re-
leased in future publications.

Data collection began in Fall 2020 and now includes
over 750 hours of recorded rehearsal sessions from four pi-
anists (three advanced, one beginner; three of the pianists
are co-authors on this paper), making this the largest syn-
chronized piano MIDI dataset to date, 3.9 times larger than
the MAESTRO dataset (see Table 1). Figure 2 shows a
cumulative distribution of the performed notes and dura-
tion over time. The advanced pianists average 12.7 = 11.2
years of formal training at the conservatory level, with Pi-
anists 1 and 2 holding undergraduate or conservatory de-
grees in piano performance. Pianist 3, a beginner, started
lessons as part of the project in Summer 2024. Pianist 4
has undergraduate-level training in piano performance.

Rehearsals are conducted on acoustic pianos equipped
with Silent systems, allowing for MIDI capture while pre-
serving the natural acoustic sound via condenser micro-
phones. Pianist 1 uses a Yamaha GBI1K Silent, Pianist 2
an Essex EUP-116E, and Pianist 4 a Yamaha Disklavier


https://r3midi.rach3project.com/

Pianist Total hours Total notes (millions) Avg. hours per session

All 769.6 20.9 0.94

P1 487.1 14.8 1.01

P2 142.4 3.6 0.85

P3 38.9 1.0 0.69

P4 101.2 1.5 0.93
MAESTRO v3 198.7 7.0 -
Batik 3.0 0.1 -

Table 1: Size comparison of piano-centric datasets with
synchronized MIDI and audio.

C1X. Pianist 3 records on a Yamaha Clavinova digital pi-
ano, with the volume slider kept fixed on their teacher’s
recommendation.

Pianists organize their rehearsal sessions freely; typical
rehearsals include technical warmups (e.g., Hanon exer-
cises, scales) and repertoire practice. The repertoire se-
lection focuses on two areas: learning new pieces from
scratch and maintaining previously learned works. This
allows for analysis of different rehearsal strategies: initial
learning, ongoing maintenance, and relearning. Each ad-
vanced pianist focuses primarily (though not exclusively)
on specific repertoire: Pianist 1 on Rachmaninoff’s Piano
Concerto No. 3, Op. 30, Pianist 2 on Grieg’s Piano Con-
certo, and Pianist 4 on Beethoven’s Piano Sonatas. For
practical reasons, contributing pianists concentrate on mu-
sic from the Common Practice Period.> Over 100 pieces
have been played (counting individual movements sepa-
rately). The dataset includes rehearsal of some four-hands
piano duets. For these, each part (primo and secondo) is
counted as a separate piece.

In addition to MIDI, the dataset includes MusicXML
scores for the performed works. Most scores were sourced
from MuseScore;? where unavailable, we created them
manually using MuseScore based on printed editions or
IMSLP* scans (preliminary tests with OMR were un-
successful for the complex piano works included in the
dataset). This manual score entry is ongoing, with over
half of the dataset currently covered. A full repertoire list
is provided in the Appendix.°

The dataset also includes live performances from the
Dress Rehearsal R3cital Series, where contributing pi-
anists perform for a small live and online audience. This
series serves to (1) provide a realistic goal for the re-
hearsals, (2) contrast rehearsal and concert settings, and
(3) simulate real concert conditions using the same multi-
modal recording setup. Two recitals have been held to date,
featuring Pianist 1 performing works by Manuel Ponce and
Modest Mussorgsky. °

This dataset is part of an ongoing research project and
will continue to grow through additional performances, an-
notations, and analysis.

2 This period corresponds roughly to the Baroque, Classical, Roman-
tic, and early 20th Century periods of Western Classical music.

3https://musescore.com

4https://imslp.org/wiki/MainPage

3 See Footnote 1 .

Shttps://r3citals.rach3project.com.
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Figure 2: Cumulative distribution of notes and duration in
the Rach3 MIDI dataset.

Weightage Accuracy Precision Recall F1
Macro 0.991 0.941 0.922  0.929
Weighted 0.991 0.989 0.991 0.989

Table 2: Evaluation of symbolic fingerprinting based piece
identification.

4. REHEARSAL PIECE IDENTIFICATION

During approximately the first two years of recording re-
hearsals, multiple pieces were practiced and recorded into
a single synchronized MIDI/audio/video take for every re-
hearsal session (i.e., a MIDI file and its corresponding syn-
chronized audio and video files). Because the cameras
were sometimes overheating during long recordings, this
process was later modified so that each practiced piece was
recorded into a separate MIDI/audio/video take. More re-
cently, pianists started labeling these files according to the
piece name. However, almost 60% of rehearsal pieces re-
mained unlabeled, requiring a semi-automatic approach to
piece identification.

For this purpose, we followed the symbolic fingerprint-
ing method developed by Arzt et al. [25]. We created three-
note tokens from MusicXML scores, generated hashes for
these tokens, and stored them in a lookup table, map-
ping each hash to the corresponding scores. Tokens were
then extracted from rehearsal recordings, and their hashes
were matched against the lookup table, with the highest-
matching score identified as the predicted piece.

We first ran this algorithm on 2155 labeled MIDI files
from Pianist 1 and Pianist 2 containing a single piece, and
whose respective scores were digitally and publicly avail-
able. The lookup table consisted of the hashes of 71 such
digital scores. We assessed the algorithm’s performance
with this labeled data and provide the results in Table 2.
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Actual Score

Predicted Score

Figure 3: Confusion matrix of the piece identification
method applied to 2155 labeled MIDI files from the
dataset, yielding an accuracy of 0.99 across 71 scores.

Four pieces were 100% misidentified, all of which ap-
peared in only one MIDI file: Pachulski’s Prelude in C Mi-
nor Op. 8 No. 1, Grieg’s ‘Solveig’s Song’, Mendelssohn’s
Songs Without Words Op. 30 No. 1 and Chopin’s Prelude
Op. 28 No. 7. Among the other pieces, there were some
misidentifications but most were identified with 100% ac-
curacy. Common reasons for misidentification included:
1) Short rehearsal durations which did not provide enough
hashes to comprehensively represent the piece being prac-
ticed. 2) Many repetitions of tiny fragments whose hashes
could easily belong in other scores. This is especially the
case for fragments of chromatic scales that are likely to ap-
pear in multiple scores. 3) Many pitch and timing errors,
which sometimes occurred in early rehearsals.

In the next step, this algorithm was used to predict the
pieces in the remaining unlabeled MIDI files. In the cases
where there were multiple pieces within a single MIDI file,
a separate pre-processing step was added to segment the
MIDI file at points where there was a long silence (>4s),
assuming that this is the point where the pianist switches
from one piece to another during the rehearsal. The fin-
gerprinting algorithm was then run on these files/segments
to predict the piece being played. The pianist’s rehearsal
log was used to identify the pieces that were played on the
given day, and the fingerprinting algorithm searches for
hashes corresponding only to the scores of those pieces.
Manual review of this process is ongoing.

5. CHALLENGES OF PERFORMANCE-SCORE
ALIGNMENT FOR REHEARSAL DATA

Alignment is a crucial first step towards quantitative per-
formance analysis. In symbolic alignment, note-wise
alignment refers to the unique matching of individual
notes, i.e., a score note may be matched to a single per-
formance note or marked as a deletion, and a performance
note may be matched to a single score note or marked as an
insertion. Note alignment algorithms do best with a one-to-
one correspondence between notes in the score and notes

Alignment Statistics Across Datasets

Matches Insertions Deletions

Figure 4: Comparison of the distribution of note matches,
insertions and deletions for performances of two pieces
in the Rach3 MIDI dataset and the (n)ASAP and Batik
datasets

in the performance [3, 26, 27], which is not the case for
rehearsal data.

Figure 4 shows the distribution of note matches, in-
sertions and deletions for multiple performances of two
pieces in the Rach3 MIDI dataset (Rachmaninoff’s Piano
Concerto, No. 3, first movement and Mozart’s Twelve
Variations on “Ah vous dirai-je, Maman”, K 265). We
compare the number of insertions and deletions for the
Rachmaninoff and Mozart pieces to those of Liszt pieces
in the (n)ASAP dataset [3] and Mozart Sonatas in the
Batik dataset [5]. To make these comparisons, we ran
performance-to-score alignments using the GlueNote [28],
a state-of-the-art symbolic alignment method that uses
learned representations and is claimed to be suitable for
alignment in the presence of large mismatches. The figure
shows more insertions and deletions in the rehearsal data
than in the polished performance data of the (n)ASAP and
Batik datasets. If the alignment methods were adequate,
we would expect the proportions of insertions, deletions
and matches of these two cases to be more similar. We do
expect more errors in the rehearsal, but not to the extent
shown in the plot. A potential factor in the error rate dis-
crepancy is the extra repetitions occurring during rehearsal.

6. REHEARSAL STRUCTURE ANALYSIS

The goal of computational rehearsal structure analysis is
to identify and group equivalent segment repetitions (see
Figure 1), yielding insight into how rehearsals are orga-
nized. We define equivalent segments as sequences of per-
formed notes that correspond to the same score passage,
even if performed with different interpretations or mistakes
and varying in length. Given a score, performance seg-
ments can be linked to corresponding score segments, with
all performance segments corresponding to the same score
segments treated as equivalent. In the absence of a score,
it is necessary to identify and compare segments within a
performance.

By considering earlier work on pattern-discovery and
music structure segmentation, we conclude that Similar-
ity Matrix approaches are better suited than Translational
Equivalence Class (TEC) [29] approaches for this analy-
sis. TEC methods treat music as a spatial arrangement of
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Figure 5: Cross Similarity Matrices with diagonals (blue) showing rehearsal structures for three sessions by Pianist 1 of
Rapsodia Mexicana No. 2. Despite the marked discontinuity (red), rehearsal C shows a complete run-through performance
through a diagonal from top-left to bottom-right. Rehearsal A demonstrates repetitions of the same score segment growing
progressively longer. Rehearsal B shows a different mixed practice: playing a segment once, repeatedly practicing its
ending, then returning to an earlier score location. Diagonal breaks in rehearsals B and C result from score ornamentations
which result in mismatches between the rehearsal and score chord bins.

events and locate exact repetitions under translation (e.g.,
transposition, reversal) in multidimensional space. They
explicitly search for sets of points that can be transformed
into each other via translation and favor exactness of the
pitch and time relationships, making them unsuitable given
the variability present in rehearsal.

Similarity Matrix approaches accommodate inexact
repetitions through flexible processing at multiple pipeline
stages. These methods compute pairwise similarity be-
tween elements in feature sequences, either between per-
formance and score (Cross Similarity Matrix, CSM) or
within a single performance (Self Similarity Matrix, SSM).
Related patterns emerge as high-similarity regions within
these matrices, specifically as diagonals meeting criteria
for minimum length, similarity threshold, and gap toler-
ance, which are then concatenated and filtered [30].

We propose an initial system for rehearsal structure
analysis based on our definition of equivalent segments,
using CSM and SSM to observe different instances of re-
hearsal structure in the Rach3 MIDI dataset (Figure 5).
The pseudocode is available in the Appendix on the com-
panion website.

A ‘chordification’ step handles the temporal variation
that occurs in rehearsal contexts. Notes with close onsets
(within A; = 100 ms) are grouped into a single ‘chord’ bin
(a binary 128-dimensional vector with 1s at active pitch lo-
cations). In chord bins, a 1 is only present at a note’s onset
location rather than at all locations where it is held, remov-
ing the effect of note offset differences. Furthermore, since
chord bins are only created when there is at least one note
onset, silences are removed from the sequence, eliminat-
ing tempo differences due to expressive choices or insta-

bility artifacts. The MIDI sequences to be compared (per-
formance or score) are represented as 128 x n matrices.

Instead of measuring similarity between chord bin pairs
through Euclidean distances, we propose a more flexible
approach. One of the 128 x n chord bin sequences (perfor-
mance for CSM, score for SSM) is converted to a 128 x n
pitch profile sequence, where the ¢-th pitch profile (p;) is a
probability distribution capturing pitch relationships in the
local neighborhood of each active note in the ¢-th chord
bin (b;). Each p; is obtained by applying a local smooth-
ing 1D convolution window (w) to the pitch axis of each
bin, allowing us to treat each entry j € {0,...,127} in
p; as the probability of observing pitch j in the context
of b;. Under the assumption that pitches in any bin b; are
binary independent events, the similarity between b; and
any pitch profile pj is expressed as the likelihood of py
representing the observed pitches in b;, formulated as the
following Bernoulli likelihood:

127

bi.; b
Lipklbs) = [ [ ord - (1 = pry)' "o ¢))
j=0

where py, ; represents the probability of pitch j being
active in profile k, and b; ; € {0,1} indicates whether
pitch j is observed in chord bin ¢. Applying this com-
putation for each chord bin ¢ against all pitch profiles py,
(where k = 0,...,n — 1) constructs the similarity matrix
by concatenating the likelihood results for each chord bin.
For CSM, we compare performance chord bins with pitch
profiles from the score (resulting in an 7core X Nperf Ma-
trix), whereas for SSM, both pitch profiles and chord bins
come from the performance (resulting in an n X n matrix).

To find relevant regions in the similarity matrix, we tra-



verse diagonals to identify those meeting prespecified min-
imum length, similarity threshold, and gap tolerance pa-
rameters. The diagonals are then post-processed by group-
ing them according to horizontal and vertical overlap ratios
and merging groups based on diagonal intersections. The
result is groups of diagonals, each reflecting a unique re-
peated segment.

Figure 5 shows an application of the rehearsal structure
analysis described above to three stages of rehearsal. In
the first (rehearsal A), the pianist practices from a specific
starting point, then moves to the next section in the piece,
and then plays the two parts together. Later (rehearsal B),
during a different rehearsal session, the pianist repeats a
segment multiple times before moving to a second segment
elsewhere in the piece, which is also repeated. Finally, re-
hearsal C focuses on full run-through rehearsals where the
goal is to play the piece from start to finish. These tend to
happen later in the learning process.

Quantitative evaluation using common pattern discov-
ery metrics [31] is not feasible due to incompatibility with
our definition of equivalent segments; annotating a Rach3
MIDI evaluation set is planned for future work. Though
simple, this approach is hard to tune, as optimal hyperpa-
rameters depend on performance details. In Figure 5, per-
formance B illustrates how an unsuitable At for chord bins
led to mismatched score and performance segments. Ad-
ditional similarity matrices (see supplementary materials)
show that note insertions cause diagonal offsets, creating
extra sub-segment groups. Future work should focus on
predicting hyperparameters from MIDI data, exploring al-
ternative chord profiles, and improving diagonal grouping
to handle insertion-induced offsets.

7. SCORE-INDEPENDENT AUTOMATIC PIANO
PERFORMANCE MISTAKE IDENTIFICATION

Effective mistake identification systems can improve the
processing of music rehearsal data. Information about pre-
dicted mistake locations and types can be incorporated into
structural analysis or alignment pipelines and enable spe-
cialized analysis in these areas. Piano performance mis-
takes are typically categorized as pitch or rhythm devia-
tions from the score, with performance-to-score alignment
serving as the primary identification method. Given the
challenges highlighted in Sections 5 and 6, we investigate
whether the approach proposed in [32], which trains mod-
els for score-independent automatic identification of con-
spicuous piano performance mistakes, can label regions
that might be particularly difficult to process due to mis-
takes, such as the note additions leading to the offset diag-
onals in Figure 5.

In [32] a Temporal Convolutional Network (TCN) was
trained on a private dataset of mistake-annotated piano per-
formances, including both sight-read and practiced perfor-
mances. To compensate for limited training data, they
pretrained a TCN autoencoder on a different private set
of unannotated professional MIDI recordings before fine-
tuning with the annotated set. However, this approach
yielded only modest improvements, likely due to domain

mismatch between professional-grade data and the test set.

Accordingly, we investigate whether we can replicate
their experiment and train a score-independent automatic
conspicuous mistake labeling model. We pre-train their
same TCN autoencoder architecture with files from the
Rach3 MIDI dataset (not labeled with mistake informa-
tion), followed by fine-tuning a final classification layer
with synthetic piano mistake data generated following the
approach and toolkit in [33]. The synthetic mistakes
toolkit applies alterations to mistake-free MIDI perfor-
mances based on a proposed taxonomy of performance
mistakes. It returns a version of the input performance with
applied mistakes and an annotation file with labels at the
synthetic mistake locations. We use the recommended in-
put performance files indicated on the toolkit’s webpage. ’
This collection includes actual performances (Vienna 4x22
[4], SMD [34], and 32 files from ASAP [35]) and music
scores within the beginner to intermediate proficiency lev-
els. The output mistake label were summarized into a bi-
nary label for the existence or absence of mistakes at dis-
crete points in the resulting piano roll. We use these data
to create train, validation and test splits and used the tran-
scription precision/recall/F1 metrics for evaluation since
the estimated and ground-truth annotations can be treated
as note events at predefined pitches. Our best training con-
figuration achieved 0.445 average F1-Measure, 0.400 av-
erage precision, and 0.528 average recall on the test set (all
for synthetic data).

Although initial qualitative observations suggest that
model predictions tend to cluster around mistake annota-
tions, the locations are not exact. This imprecision would
compromise our ability to rely on such mistake predictions
to improve our rehearsal data processing pipelines. Fur-
ther investigation is needed to determine which synthetic
mistake types can be effectively learned, and to extend
the toolkit to create mistakes that represent observations
from the Rach3 MIDI Dataset, as current parameters are
set more heuristically. Furthermore, it is possible to create
a small collection of human-annotated mistake data from
the Rach3 MIDI dataset to be used for testing.

8. CONCLUSION

This paper introduced the Rach3 MIDI dataset, the largest
publicly available collection of piano rehearsal data,
recorded over four years with four pianists. It forms part of
an ongoing project with future releases planned, including
audio and video recordings. Using the dataset, we explored
critical computational challenges associated with piano re-
hearsal analysis, applying state-of-the-art methods in three
areas: symbolic rehearsal-to-score alignment, rehearsal
structure analysis, and automatic mistake identification.
Our findings demonstrate that existing methods require
substantial adaptation for rehearsal analysis. The Rach3
dataset provides both the foundation for computational re-
hearsal analysis and empirical evidence of methodological
gaps that must be addressed.

Thttps://github.com/Alia-morsi/piano-synmist
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