
L
at

e-
B

re
ak

in
g

/D
em

o
Se

ss
io

n
E

xt
en

de
d

A
bs

tr
ac

t,
IS

M
IR

20
24

C
on

fe
re

nc
e

MATCHMAKER: A PYTHON LIBRARY FOR REAL-TIME MUSIC
ALIGNMENT

Jiyun Park1 Carlos Cancino-Chacón2 Taegyun Kwon1 Juhan Nam1

1 Graduate School of Culture Technology, KAIST, South Korea
2 Institute of Computational Perception, Johannes Kepler University, Linz

june@kaist.ac.kr, carlos_eduardo.cancino_chacon@jku.at

ABSTRACT

Music alignment is a fundamental MIR task, and real-
time music alignment is a necessary component of many
interactive applications (e.g., automatic accompaniment
systems, automatic page turning). This paper introduces
Matchmaker, an open source Python library for real-time
music alignment. Unlike offline alignment methods, for
which state-of-the-art implementations are publicly avail-
able, real-time (online) methods have no standard im-
plementation, forcing researchers and developers to build
them from scratch for their projects. We aim to provide
efficient reference implementations of score followers for
use in real-time applications which can be easily integrated
into existing projects.

1. INTRODUCTION

Automatic music alignment refers to the task of link-
ing or matching two musical signals of the same musi-
cal work. This alignment can involve matching different
performances of the same piece or matching the perfor-
mance of a piece with its musical score. Music align-
ment is one of the fundamental tasks in Music Informa-
tion Retrieval (MIR) and serves as the basis for several
applications, ranging from the analysis of music perfor-
mance [1,2], real-time interactive systems [3] or powering
visualizations [4, 5]

There are two main types of music alignment:

• Offline: Alignment of two recordings or documents,
such as audio recordings, MIDI performances, or
MusicXML scores.

• Online: Alignment of a live (i.e., real-time) perfor-
mance to the music encoded in a target document
(e.g., a pre-annotated audio recording or a symbolic
score). The problem of real-time online alignment is
known in the MIR literature as score following and

© J. Park, C. Cancino-Chacón, T. Kwon and J. Nam.. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: J. Park, C. Cancino-Chacón, T. Kwon and J.
Nam., “Matchmaker: A Python library for Real-time Music Alignment”,
in Extended Abstracts for the Late-Breaking Demo Session of the 25th
Int. Society for Music Information Retrieval Conf., San Francisco, United
States, 2024.

can be particularly useful in live interactive settings,
such as automatic accompaniment systems.

While there have been several recent works address-
ing offline music alignment for both symbolic and audio
formats, there have not been many new contributions to
real-time alignment since the mid-2010s. In recent years,
there have some important efforts in providing robust open
source toolboxes for offline music alignment. In the au-
dio domain, Müller et al. [6] introduced the Sync Toolbox,
which provides a reference implementation of DTW-based
alignment. In the symbolic domain, Parangonar [1] and
Nakamura et al.’s [7] tools for symbolic music. No open-
source libraries for real-time score following.

This work introduces Matchmaker, an open-source
Python library for real-time music alignment. The library
provides robust reference implementations and can be eas-
ily integrated with other software. This library also ad-
dresses the case of both audio and symbolic alignment.

The rest of this paper is structured as follows

2. MUSIC REPRESENTATIONS

2.1 Audio

Our implementation uses two main categories of audio
features: Traditional signal processing features, repre-
sented by chromagrams, and handcrafted features such as
LogLinearSpectralOnset and ChromaOnset. Chro-
magram is the most basic feature used in score follow-
ing, which ensures fast and high performance for non-
percussive pieces such as piano pieces. However, the most
important timepoint for alignment if the timing of the on-
sets of tones. We added handcraft feature in order to con-
sider the energy peak of onset event and decay of subse-
quent signals. In specific, we perform a first-order dif-
ference followed by half-wave rectification on a given se-
quence. LogLinearSpectralOnset is an implementa-
tion of the function used in [8], which is designed to be
a scale that captures the information of polyphony better
than mel-spectrogram.

2.2 Symbolic

In this work, we use two common symbolic music pro-
cessing features for capturing information from MIDI per-
formances: piano rolls and pitch class distributions. Pi-



Figure 1. Overview of Matchmaker

ano rolls are a 2D arrays that have pitch and time infor-
mation, and can be considered the symbolic equivalent of
magnitude spectrograms from audio. Pitch class distribu-
tions are the symbolic equivalent of chromagrams. The
user can specify the frame rate for both of these represen-
tations, and we use a default frame rate of 100 frames per
second. Figure ?? shows a comparison of these features.

3. ALIGNMENT METHODS

3.1 Dynamic Time Warping

3.2 Hidden Markov Model

4. MATCHMAKER

In this section we provide a description of the Matchmaker
library. The library was born out of the need for modu-
lar and flexible real-time alignment methods on different
applications (e.g., accompaniment systems).

4.1 Package Structure

The package is structured as illustrated in Figure ??. The
three main elements

1. Stream objects that handle input real-time inputs.
For audio there is

2. Feature extractors Processor

3. Online alignment OnlineAlignment

The following is example code to run Matchmaker in
simulation mode with audio input:

For efficiency, some methods are implemented in
Cython [9], a superset of Python designed for C-like per-
formance by incorporating C data types and optimizing
Python code execution.

4.1.1 Simulating Mode for Input Stream

In the development and testing phase of the Matchmaker li-
brary, a MockStream can be utilized to simulate real-time
stream processing. This approach allows for the evalua-
tion of the system’s performance and robustness without
the need for live stream input. By using pre-recorded au-
dio files or MIDI files, all the alignment methods can be
tested under controlled conditions.

1 from matchmaker import Matchmaker
2
3 score_path = "path/to/score.mid"
4 performance_path = "path/to/input.wav"
5
6 # Specify input stream
7 audio_stream = AudioStream()
8
9 # specify a score follower

10 matchmaker = Matchmaker(
11 score_path,
12 performance_path,
13 algorithm="oltw_arzt",
14 mock=True,
15 )
16
17 # Run the matchmaker with stream
18 audio_stream.start()
19 matchmaker.start()
20
21 audio_stream.stop()
22 matchmaker.stop()

Figure 2. Matchmaker example

4.1.2 Evaluation

Given the proper pair of annotation files for the score and
performance audio, the performance of the matchmaker
library can be evaluated. The annotated labels from the
score and performance audio, respectively, are considered
as ground truth and the matchmaker’s output is calculated
as a prediction. The annotations file can be at any granu-
larity the user defines, from beat-, measure-, or even note-
level, but must be consistent across the file pair. By com-
paring the aligned output with the annotated reference, var-
ious evaluation metrics such as precision, reliability, and
workload can be calculated.

4.1.3 Visualization



5. ACKNOWLEDGMENTS

This work has been partially supported by the Austrian Sci-
ence Fund (FWF), grant agreement PAT 8820923 (“Rach3:
A Computational Approach to Study Piano Rehearsals”).

6. REFERENCES

[1] S. D. Peter, C. E. Cancino-Chacón, F. Fos-
carin, A. P. McLeod, F. Henkel, E. Karystinaios,
and G. Widmer, “Automatic Note-Level Score-to-
Performance Alignments in the ASAP Dataset,”
Transactions of the International Society for Mu-
sic Information Retrieval, vol. 6, no. 1, pp.
27–42, Jun. 2023. [Online]. Available: http:
//transactions.ismir.net/articles/10.5334/tismir.149/

[2] C. E. Cancino-Chacón, M. Grachten, W. Goebl, and
G. Widmer, “Computational Models of Expressive
Music Performance: A Comprehensive and Critical
Review,” Frontiers in Digital Humanities, vol. 5,
p. 25, Oct. 2018. [Online]. Available: https://www.
frontiersin.org/article/10.3389/fdigh.2018.00025/full

[3] C. Cancino-Chacón, S. Peter, P. Hu, E. Karystinaios,
F. Henkel, F. Foscarin, N. Varga, and G. Widmer, “The
ACCompanion: Combining Reactivity, Robustness,
and Musical Expressivity in an Automatic Piano Ac-
companist,” in Proceedings of the 32nd International
Joint Conference on Artificial Intelligence IJCAI-23,
Macao, S. A. R., 2023.

[4] O. Lartillot, C. Cancino-Chacón, and C. Brazier,
“Real-Time Visualisation of Fugue Played by a String
Quartet,” in Proceedings of the Sound and Music Com-
puting Conference (SMC 2020), Online, 2020.

[5] A. Arzt, H. Frostel, T. Gadermaier, M. Gasser,
M. Grachten, and G. Widmer, “Artificial Intelligence
in the Concertgebouw,” in Proceedings of the 24th In-
ternational Joint Conference on Artificial Intelligence
(IJCAI-15), Buenos Aires, Argentina, 2015.

[6] M. Müller, Y. Özer, M. Krause, T. Prätzlich, and
J. Driedger, “Sync toolbox: A python package for
efficient, robust, and accurate music synchronization,”
Journal of Open Source Software, vol. 6, no. 64, p.
3434, 2021. [Online]. Available: https://doi.org/10.
21105/joss.03434

[7] E. Nakamura, K. Yoshii, and H. Katayose, “Perfor-
mance Error Detection and Post-Processing for Fast
and Accurate Symbolic Music Alignment,” in Pro-
ceedings of the 18th International Society for Mu-
sic Information Retrieval Conference (ISMIR 2017),
Suzhou, China, 2017.

[8] S. Dixon, “Live tracking of musical performances
using on-line time warping,” in Proceedings of the
8th International Conference on Digital Audio Effects,
vol. 92. Citeseer, 2005, p. 97.

[9] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S.
Seljebotn, and K. Smith, “Cython: The best of both
worlds,” Computing in Science & Engineering, vol. 13,
no. 2, pp. 31–39, 2011.

http://transactions.ismir.net/articles/10.5334/tismir.149/
http://transactions.ismir.net/articles/10.5334/tismir.149/
https://www.frontiersin.org/article/10.3389/fdigh.2018.00025/full
https://www.frontiersin.org/article/10.3389/fdigh.2018.00025/full
https://doi.org/10.21105/joss.03434
https://doi.org/10.21105/joss.03434

	1. Introduction
	2. Music Representations
	2.1. Audio
	2.2. Symbolic

	3. Alignment Methods
	3.1. Dynamic Time Warping
	3.2. Hidden Markov Model

	4. Matchmaker
	4.1. Package Structure
	4.1.1. Simulating Mode for Input Stream
	4.1.2. Evaluation
	4.1.3. Visualization


	5. Acknowledgments
	6. References

