
Strategies for Conceptual Change in

Convolutional Neural Networks

Maarten Grachten
Carlos Eduardo Cancino Chacón

Austrian Research Institute for Artificial Intelligence

OFAI-TR-2015-04 Version 1.0

Abstract

A remarkable feature of human beings is their capacity for creative
behaviour, referring to their ability to react to problems in ways that
are novel, surprising, and useful. Transformational creativity is a form
of creativity where the creative behaviour is induced by a transformation
of the actor’s conceptual space, that is, the representational system with
which the actor interprets its environment. In this report, we focus on
ways of adapting systems of learned representations as they switch from
performing one task to performing another. We describe an experimental
comparison of multiple strategies for adaptation of learned features, and
evaluate how effectively each of these strategies realizes the adaptation, in
terms of the amount of training, and in terms of their ability to cope with
restricted availability of training data. We show, among other things, that
across handwritten digits, natural images, and classical music, adaptive
strategies are systematically more effective than a baseline method that
starts learning from scratch.

1

Contents

1 Introduction 3
1.1 From adaptive representations to creative behaviour 4

2 Related work 6
2.1 Transfer learning . 6
2.2 Domain adaptation . 7
2.3 Multi-task learning . 7
2.4 Concept drift . 8

3 Method 8
3.1 Problem description . 8
3.2 Evaluation criteria . 9
3.3 Convolutional Neural Networks 9

3.3.1 Convolutional autoencoders 11
3.3.2 Multi-task learning . 12
3.3.3 Transfer of a CNN model from one task to another 12

3.4 Strategies for conceptual change in CNNs 13
3.4.1 Two baselines . 13
3.4.2 Selective reuse of the prior model: keep convolutional filters 13
3.4.3 Prior regularisation . 14
3.4.4 A note on random initialization 14

4 Experiment 15
4.1 Data Sets . 16
4.2 Model training . 17

5 Results and discussion 19

6 Conclusions 24

A Activation and Loss functions 28
A.1 Nonlinear activation functions . 28
A.2 Loss functions . 28

2

1 Introduction

In order to survive, any living organism has to adapt to its environment. Far
from being static, the environment for most organisms is subject to constant
change. Arguably, complex and plastic information processing structures such
as the mammal brain are an evolutionary answer to the requirement to adapt
to unforeseen circumstances during the lifespan of the organism [Allen, 2012].

Some aspects of this adaptive behaviour, most notable in higher mammals
such as humans, are called creative. Although the term is notoriously evasive of
a precise definition, there is common agreement that creative behaviour involves
elements such as novelty, surprise, and value [Weisberg, 1993; Csikszentmihalyi,
1996]. An example of creative behaviour can be found in the use of domain
names in the world wide web. Although Top Level Domains (such as .com,
.org, it) are intended as a means of structuring the world wide web, they are
nowadays used for their linguistic meaning, rather than their original denotation
of thematical or geographical structure. Examples of such uses are youtu.be,
friend.ly, and podca.st. Arguably, this creative use is driven by the increasing
use and communication of URLs, and therefore a growing need for shorter URLs,
that are easy to memorize.

One of the most seminal attempts at formalizing the notion of creativity is
that of Boden [2004]. She links creative behaviour of an agent to its conceptual
space. This space represents the way the agent interprets its perception and
actions. According to Boden, creativity amounts to mapping, exploration, and
transformation of a conceptual space by an agent. An example of such a trans-
formation given by Boden [1994, p. 522] is the transformation of the conceptual
space for music by Arnold Schoenberg, who invented radically new music by
dropping the constraint of the home key from the existing conceptual space of
music.

Most literature on creativity focuses on the high level, cognitive phenomena
it involves, taking for granted that a conceptual space, a way of dealing with
the environment, is already present. In contrast to viewing creativity as a
discrete transformation of one static conceptual space into another, a promising
alternative perspective is to regard conceptual spaces as inherently dynamic.
In this view, creativity is an inherent property of the dynamics of conceptual
spaces that brings them into existence in the first place. This view also suggests
a more gradual distinction between perception and cognition. Hofstadter [2008,
p. 308] goes so far as to say that the ability to reperceive is a critical element
of creativity.

This focus on the dynamic aspects of conceptual spaces naturally leads to
representation learning [Bengio et al., 2013], an active field of research in ma-
chine learning. In this area, computational models, predominantly in the form of
neural networks, are trained on data to form hierarchically structured represen-
tations of the data. Often, such representations capture semantically relevant
characteristics of the data at several levels, and as such form a robust basis for
subsequent tasks such as classification, or organization of data.

Typical methods for representation learning deal with the classical machine
learning scenario in which a model is trained on a set of data x, possibly with
labels y, drawn from a distribution p(x,y) (the generating distribution), and
evaluated on further data that is also assumed to be from the same distribution
p(x,y). This implies that the training methods are designed to converge to a

3

single set (or hierarchical structure) of representations, that is optimal given
p(x,y). As stated at the beginning of this Section however, creativity is often
driven by a need to adapt to a changing environment. In terms of the machine
learning paradigm, this violates the assumption that p(x,y) is static over time.

Thus, for a representation learning model to stay effective in the face of a
changing environment requires methods beyond standard representation learn-
ing algorithms. This shift of focus from learning representations in a static en-
vironment to adapting learned representations in a dynamic environment brings
on multiple non-trivial problems to be addressed. For example, there is a need
for a measure of how well a given representation suits the environmental re-
quirements. Furthermore, in the light of an environmental change, sometimes
gradual change of the learned representations may be beneficial, whereas on
other occasions, a more radical change (for example by learning representations
from scratch) may be more effective.

It is not in the scope of the current report to address all of these problems.
In this document, we restrict ourselves to the scenario where a radical change
in environment is given, and investigate which of several alternative strategies
for dealing with that change are most effective in neural network models for
representation learning. We are ultimately interested in finding generally useful
strategies that allow a computational system to adapt efficiently to changing
environmental requirements. We start by a precise description of the problem,
and the model architecture we use for learning. Then we define a number
of possible adaptation strategies, and report on an experiment in which these
strategies are compared by evaluating them on several data sets. Before that,
we discuss how the work presented here relates to creativity in a broader sense.

1.1 From adaptive representations to creative behaviour

In this document, we focus on strategies for conceptual change to adapt learned
representations from one task to another task. The tasks we consider here are
classification, and autoencoding. A change of task (for the model to adapt to)
may either mean switching from classification to auto-encoding or vice versa,
or in the case of classification, a change of target classes. Note however, that
the change of task inducing the conceptual change (the changes in the learned
representations) in these cases is an extrinsic factor. From the perspective of
an agent interacting with an outside world, such changes may reflect changes in
its environment (e.g. a change of habitat, with different species and objects).
This scenario corresponds to the type of creativity described above, a form of
adaptive, problem solving behaviour. A different, but related interpretation
emphasizes the generative, aesthetic aspects of creative behaviour, that may
lead to novel artefacts. In this case, the conceptual change manifest in the
creative behaviour is thought to be driven by intrinsic factors rather than as a
response to changes in the environment.

Are the methods for conceptual change described here, and evaluated in
the context of classification and autoencoding, also of use in the realization of
this second kind of creativity? Two current computational theories of creative
behaviour suggest they may be, since both posit that at the basis of creative
behaviour are mechanisms that encode incoming information, and adapt to
a dynamic environment to provide optimal encodings, in line with evidence
for learning principles in living organisms, such as minimum entropy coding

4

[Barlow, 1989; Atick, 1992; Olshausen and Field, 1996]. We will briefly describe
both theories.

Wiggins and Forth [2015] propose a theory of creativity based on the Global
Workspace Theory [Baars, 2002]. The criterion that determines what represen-
tations develop in this model is based on information-theoretic principles, de-
manding that the representations facilitate accurate prediction of the perceptual
future, leading to more efficient information processing. In their model, mul-
tiple competing generators match perceptual input to learned representations
from memory to predict future input. The representations most of the effective
generators surface into the Global Workspace, reflecting conscious awareness.
This awareness in turn, updates an associative memory that stores the adaptive
representations to be used by the generators. The changes in semantics as a
result of adapting the conceptual space (for instance in the form of aberration
[Wiggins, 2006]) may be regarded as a restricted form of creative behaviour. In
addition, Wiggins and Forth [2015] theorize that an instantiation of the theory in
the form of a computational model, after being exposed to stimuli that have im-
printed memories, is able to generate novel artefacts: In the absence of external
stimuli, the system can fill its perceptual buffers from memory, thus continuing
the cycle of generation from memory, selection, and updating memory.

Schmidhuber [2010] also argues that a fundamental aspect of cognition in an
agent is to learn to compress (or equivalently, predict), the outside world and its
affordances. Plausible drivers for this goal of optimal compression/prediction
are extrinsic rewards such as sparing use of physiological resources (informa-
tion that can be sparsely represented takes less energy to process and retain),
and a selective advantage (by allowing better anticipation of future events).
But Schmidhuber argues that an important explanatory factor for human be-
haviour is an intrinsic motivation to improve compression/prediction capabil-
ities. This means that for an agent it is desirable in itself to discover ways
of better compressing and predicting its experience, where the (intrinsic) re-
ward is proportional to the degree of improvement. Schmidhuber claims that
this intrinsic motivation manifests as curiosity in human beings, and that the
subjective experience of improving compression/prediction is aesthetic (that is:
fun, beauty, or elegance). This also leads to a notion of surprise that is differ-
ent from the usual information-theoretic notion of surprise, in the sense that
rather than the information content of an event itself, it is the degree to which
the information content of an event triggers an improvement of the agent’s com-
pression/predicting capabilities. Thus, just as a sequence of repeated events (no
information content), a sequence of random events (high information-content)
is not surprising, and will soon become boring.

Both of the theories of creative behaviour described above involve an adap-
tive component that generates, predicts, or compresses perceptual input, in
other words, it maps incoming data to an internal representation that adapts to
accommodate novel patterns in the data. The precise nature of this accommoda-
tion process is not part of the above (rather high level) theories, but the methods
evaluated here hint at possible implementations of such a process, especially in
situations where the patterns in the data change drastically. Furthermore, the
fact that the methods proposed here concern (deep) neural networks suits the
reinforcement learning (RL) paradigm of Schmidhubers theory, where neural
networks in combination with Q-learning [Watkins, 1989] have been shown to
be very successful at a variety of game-playing tasks [Mnih et al., 2013; van

5

Hasselt et al., 2015].
The remainder of this document is structured as follows. In Section 2, we

discuss a number of related problems known from machine learning and dis-
cuss their relevance for the problem at hand. In Section 3, we introduce the
architecture of the neural network model we use, and a number of possible adap-
tation strategies to facilitate conceptual change. Section 4 presents the setup of
the comparative evaluation of the strategies. The results of this evaluation are
reported, and discussed in Section 5. Conclusions are presented in Section 6.

2 Related work

2.1 Transfer learning

Transfer learning is a sub-field of machine learning that deals with the question
how to wield knowledge obtained for some task in some domain (the source
task and domain, respectively), to better solve another task in a (possibly dif-
ferent) domain (the target task and domain, respectively). This rather general
definition leaves room for a number of variations of transfer learning problems,
depending on the conditions [Pan and Yang, 2010]. Most of these transfer learn-
ing problems can be characterized with the help of a probabilistic formalization:
Let X be a feature space, and P (X) (X ∈ X) a marginal distribution over X .
Then the tuple D = {X , P (X)} is called a domain. Furthermore, let Y be a
label space and P (Y |X) (X ∈ X , Y ∈ Y) a conditional distribution over Y,
given X. Then the tuple T = {Y, P (Y |X)} is called a task1. Where necessary,
the sub-scripts s and t are used on any of these elements to denote that the
elements belong to the source and target domains, respectively.

Domain adaptation (see section 2.2) is a form of transfer learning that as-
sumes the same task, but a different domain (i.e. Ds ̸= Dt)), whereas in induc-
tive transfer the essential element is that the task is different (i.e. Ts ̸= Tt) [Ben-
David et al., 2007; Pan and Yang, 2010]. Another sub-problem of transfer
learning is class imbalance, where a particular class is substantially under-
represented in the source domain, with respect to the target domain, or vice
versa: Ps(X | Y) ̸= Pt(X | Y) [Jiang, 2008]. Finally, covariate shift refers to
the situation where the relation of a class label to the feature space changes
from the source to the target domain: Ps(Y | X) ̸= Pt(Y | X) [Jiang, 2008].
This problem is also known as concept drift (see Section 2.4), with the difference
that the latter term is more commonly used in contexts of online learning [Wid-
mer and Kubat, 1996]: rather than dealing with distinct source and target
domains/tasks, concept drift refers to a gradual change of P (Y | X) over time
within a domain.

Torrey and Shavlik [2009] describe three ways in which transfer from a source
task/domain can help a model perform a target task, as illustrated in Figure 1.
Most studies concerning transfer loss use only the asymptotic performance as a
criterion for successful transfer. A common measure is the transfer-loss [Glorot
et al., 2011]. It measures the loss of the transfer method minus the loss of
an in-domain baseline method for the target domain, that is not informed by
the source domain. The transfer-loss is thus proportional to the difference in
asymptotic performance in Figure 1.

1The task specifies the marginal distribution P (Y |X) to be approximated

6

Training

Pe
rf

o
rm

an
ce

higher start

higher
slope

higher asymptote

with transfer
without transfer

Figure 1: Three possible ways in which transfer learning may enhance perfor-
mance on the target task. Adapted from [Torrey and Shavlik, 2009]

Furthermore, unsupervised pre-training of deep architectures [Hinton et al.,
2006] can be regarded as forms of transfer learning, since the unsupervised
learning task on which the model is trained in the first phase is different from
the final, supervised task.

2.2 Domain adaptation

As previously stated, domain adaptation is a form of transfer learning where
out-of-domain data (i.e. source domain) is used to improve the performance of
a model solving the same task in the target domain. In this framework, the
marginal distributions Ps(Y |X) and Pt(Y |X) are assumed to be neither iden-
tical nor independent [Daumé III and Marcu, 2006]. Previous work in domain
adaptation use source data as “prior knowledge” to estimate the model param-
eters of the target domain using a Maximum a Posteriori (MAP) approach for
tasks involving language modelling and parsing [Bacchiani and Roark, 2003].
Chelba and Acero [2006] propose a model using a Maximum Entropy model for
the MAP estimation of the model parameters of the target domain for capital-
ization of text. This strategy was later revisited in [Daumé III, 2007], where the
parameters of a model trained in the source domain are used to regularise the
parameters of a model trained in the target domain.

2.3 Multi-task learning

Multi-task learning is related to transfer learning in the sense that a model is
used to address different (but related) tasks, but where most transfer learning
problems involve a phase where a model is trained on one task before turning to
another task, multi-task learning involves the simultaneous training of the model
for the different tasks. The motivation for this is that the training signals from
related tasks serve to regularize the model, leading it to generalize better. For
example, in a task where the steering direction of a vehicle was to be predicted
based on camera images of the road in front of the vehicle, Caruana [1997] found
that it is beneficial to train the model (a neural network) simultaneously on a
number of additional tasks, such as predicting the left and right borders of the
road, and whether the road has one or two tracks. Simultaneous training in this

7

case was realized by having one output unit for each task, so effectively, all but
the upper layer of the model are affected by the training on multiple tasks.

2.4 Concept drift

Multi-task learning is related to transfer learning in the sense that a model is
used to address different (but related) tasks, but where most transfer learning
problems involve a phase where a model is trained on one task before turning to
another task, multi-task learning involves the simultaneous training of the model
for the different tasks. The motivation for this is that the training signals from
related tasks serve to regularize the model, leading it to generalize better. For
example, in a task where the steering direction of a vehicle was to be predicted
based on camera images of the road in front of the vehicle, Caruana [1997] found
that it is beneficial to train the model (a neural network) simultaneously on a
number of additional tasks, such as predicting the left and right borders of the
road, and whether the road has one or two tracks. Simultaneous training in this
case was realized by having one output unit for each task, so effectively, all but
the upper layer of the model are affected by the training on multiple tasks.

3 Method

The specific problem we focus on in the current experiment is a form of transfer
learning. We are interested in the question how a model that has been trained
to perform a particular task, can adapt to a novel task most effectively. As
illustrated in Figure 1, there are several aspects to the notion of effective adap-
tation — most importantly the asymptotic accuracy on the novel task, and the
amount of training it takes to perform a task accurately. We define the criteria
we use for evaluation adaptation strategies in Section 3.2, but before that, we
will give a more precise description of the problem we are addressing.

3.1 Problem description

Given a labelled data set, we divide the data set into two subsets, such that one
subset contains the data pertaining to one half of the labels, and the other subset
contains the data pertaining to the other half of the labels. We call one subset
the source domain, and the other the target domain. This implies that the label
space is different, i.e. Ys ̸= Yt, and therefore Ps(Y | X) ̸= Pt(Y | X). Although
splitting the data set by labels does not strictly imply that the marginal data
distributions of the domains are different, the labels usually relate to some
morphological aspect of the features, so it is likely that Ps(X) ̸= Pt(X).

The tasks we consider are classification, and autoencoding, and multi-task
learning, in which a model is simultaneously trained to perform classification and
autoencoding. The classification task is formalized as T CL = {Y, P (Y | X)}.
Note that in the autoencoding task, the labels Y are not used. Unfortunately,
the probabilistic formalism is not well-suited to formalize the autoencoding task:
autoencoding would be regarded as a case where Y = X , which implies the trivial
task T AE = {X , P (X | X)}. The actual value of the autoencoding task is in the
fact that the bottleneck architecture of the models used to approximate P (X |
X) prevents them from learning a trivial mapping. A more precise description

8

of the autoencoding task is given in Section 3.3.1. Finally, multi-task learning
involving simultaneous classification and autoencoding can be formalized as
follows. Instead of the label space Y, we define Z = X × Y . The multi-task
formalization is then T MT = {Z, P (Z|X)}, where Z ∈ Z.

The aim of an adaptation strategy is then to transform a model that is
optimal for task Ts on Ds into a model that is optimal on Tt on Dt. For
example, a model trained for a classification task T CL in domain Ds, might be
adapted to perform a classification task T CL in domain Dt, but it may also be
adapted more radically, to perform autoencoding T AE in domain Dt.

Since the architecture of a model is determined by the task it performs, it is
not obvious what we mean by adapting a model from one task to another. In
Section 3.3.3 we will describe this procedure in more detail. Another aspect to
be clarified is how we measure the success of adaptation strategies. We address
this issue in Section 3.2.

3.2 Evaluation criteria

As described above, our goal is to find adaptation strategies for representation
learning models that allow a model to perform as well as possible on a new task,
with as little training as necessary. In terms of the schematic plot in Figure 1,
our primary interest is in the slope of the learning curve, but obviously, a model
that adapts quickly but has substantially lower asymptotic performance than is
possible with a baseline method is undesirable. Therefore, both the slope and
the asymptotic performance with respect to some baseline methods should be
taken into account when evaluating the methods.

We are ultimately interested in adaptation strategies that work well inde-
pendent of the source and target tasks involved. This suggests that we define
a single quality measure, that aggregates the the slopes and asymptotic perfor-
mances of a strategy over the different combinations of source and target tasks.
We chosen not to do so for the following reasons. Firstly, since they are dif-
ferent quantities, there is no obvious way to combine the slope and asymptotic
performance of an adaptation strategy in a principled manner. A weighting
of the two quantities necessarily reflects a personal judgement on their rela-
tive importance. Secondly, the experiments reported here should be regarded
as explorative. Although we are interested in establishing the superiority of
one adaptation strategy over another, independent of the tasks and domains
involved, we have no a priori indication that such a ranking can be established
across tasks and domains.

For these reasons, we refrain from defining a single evaluation criterion for
the adaptation strategies. We believe that more insight is gained by a qualita-
tive analysis of the evolution of task performance in target domain for each of
the adaptation strategies, as a function of training, using plots similar to the
diagram in Figure 1.

3.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a special kind of Feed Forward Neu-
ral Networks (FFNNs) that build some invariance properties into the structure of
the neural network [Bishop, 2006]. CNNs have been successfully used in several
machine learning applications, including natural language processing and image

9

classification [Krizhevsky et al., 2012]. CNNs have a number of advantages over
fully connect FFNNs. Firstly, the convolutional nature of the architecture, us-
ing small convolutional filters enforces the extraction of local features [LeCun
et al., 1998]. Secondly, they typically have shared weights, which greatly re-
duces number of parameters compared with similar sized FFNNs [Krizhevsky
et al., 2012]. Lastly, they typically perform spatial sub-sampling, which adds
robustness against noise and local distortions. A typical CNN has three building
blocks: convolutional, subsampling, and dense (fully connected) layers. A CNN
is illustrated in Figure 2.

The basic building block of CNNs are the convolutional layers. The input of

l-th convolutional layer consists of m
(l−1)
1 feature maps from the previous layer,

while its output consists of m
(l)
1 feature maps. The i-th feature map in this

layer is given by

y
(l)
i = fl

m
(l−1)
1∑
j=1

W
(l)
i,j ∗ y

(l−1)
j +B

(l)
i

 , (1)

where ∗ represents the convolution of y
(l−1)
j with W

(l)
i,j , a kernel of size h

(l)
1 ×h

(l)
2

connecting the j-th feature map in layer (l − 1) with the i-th feature map in

layer l, B
(l)
i is a bias (matrix) and fl is an elementwise non-linear activation

function.
Pooling can be understood as a form of non-linear downsampling. Max-

Pooling layers partition an input feature map into a set of non-overlapping
rectangles (pool), and for each such pool, outputs its maximum value.

Finally, dense layers are the standard fully connected layers in FFNNs. The
output of the l-th dense layer can be computed as

y(l) = fl

(
W(l)y(l−1) + b(l)

)
, (2)

where W(l) is a filter connecting layer (l− 1) to layer l, b(l) is a bias vector and
fl is an elementwise non-linear activation function. The set of all parameters of
a CNN, i.e. kernels, filters and biases, will be denoted θ.

Common activation functions for CNNs include sigmoid, tanh, rectifier,
and softmax, which is particularly useful as the output of a multi-class clas-
sifier [Bishop, 2006]. See Appendix A for explicit definitions of these activation
functions.

In practice, convolutional and pooling layers are used to learn a feature
hierarchy, while dense layers are used for classification purposes based on the
computed features [LeCun et al., 1998]. In the following, we will refer to the
stack of a convolutional and pooling layers as a convolutional stage, and the
stack of dense layers as fully connected stage, or as a classification stage, if its
primary objective is classification.

The classification task for CNNs can be formally described as follows. Given
a set of input images {x1, . . . ,xN}, and a set of targets {t1, . . . , tN}, where ti is
a one-hot encoding of the class of xi, the parameters of a CNN can be learned
in a supervised way as

θ̂ = argmin
θ

L(θ), (3)

10

..

Input
layer l0

.

Convolutional
layer l1

.

Pooling
layer l2

.

Convolutional
layer l3

.

Pooling
layer l4

.

Dense
layer l5

.

Dense
layer l6

Figure 2: Example of the architecture of a Convolutional Neural Network classi-
fier, including two convolutional-pooling substages (layers l1 and l2, and l3 and
l4), and a classification stage consisting of two fully connected layer (as a coding
substage l5, and the proper classifier l6).

where L(θ) is the loss function. The standard loss function for a multi-class
classification problem is the mean categorical cross entropy2 [Bishop, 2006].

3.3.1 Convolutional autoencoders

Most methods in unsupervised learning are based on the “encoder-decoder”
paradigm [Masci et al., 2011], where the input is first transformed into a (typ-
ically) lower-dimensional space (encoding stage) and then expanded to repro-
duce the initial data (decoding stage). Examples of this paradigm include Low-
Complexity Coding and Decoding Machines, Predictability Minimization layers,
Restricted Boltzmann Machines and autoencoders [Masci et al., 2011].

An autoencoder (AE) is a particular neural network architecture used for
feature learning. Its aim is to learn an encodings, i.e., distributed (and usually
compact) representation of a set of data. Formally, an AE takes an input x ∈
RNx and maps it to a latent representation or encoding yh ∈ RNh , using a
deterministic function of type

yh = f (x;θ) = f (Wx+ b) (4)

where θ = {W,b} are the encoding parameters. A typical autoencoder uses
functions similar to those of the fully connected layers (see Eq. (2)). This code
is used to reconstruct the input by a reverse mapping (decoding), i.e.,

ydecoding = f
(
yh;θ

′
)
= f

(
W

′
yh + b′

)
, (5)

where θ
′
= {W′

,b
′} are the decoding parameters. A usual constraint of the

decoding parameters if for the weights to take the form W
′
= WT , i.e., use the

same weights for encoding of the input and decoding of the latent representation.
Convolutional Autoencoders (CAEs) are (deep) autoencoders that use CNNs

in the in the encoding stage [Masci et al., 2011]. As previously stated in Section
3.3, CNNs allow for discovery of localized features that appear over 2D input.
In a CAE, the reconstruction of the input data is due to a combination of basic
image patches based on the latent code.

2See Eq. (16) in Appendix A.2.

11

The decoding layers corresponding to fully connected layers are given in the
same form as in Eq. (5). For convolutional layers, the corresponding i-th feature
map of decoding layer l is given by

y
(l)
i = f

(
yh(l−1) ;θ

′
)
= f

m
h(l−1)
l∑
j=1

W̃
(l)
i,j ∗ y

h(l−1)

j +B′(l)

 , (6)

where yh(l−1) represents all m
h(l−1)

l feature maps of the encoding layer h(l−1), W̃
represents the flip operation over both weight dimensions of the corresponding
encoding parameter W, and B′(l) is a bias.

For downsampling layers in the encoding stage, the corresponding decoding
layer corresponds to an upsampling layer. One possible upsampling strategy
for max-pooling layers is to “remember” the position of the input that had the
maximum value for every max-pooling during the forward propagation of the
input data through the network. We will refer to a a layer that implements such
a strategy as an unpooling layer.

Given a set of training data X = {x1, . . . ,xN}, the parameters of a (C)AE
can be optimized in an unsupervised way by minimizing the reconstruction error
of X, in a similar fashion to Eq. (3). The typical loss function for (C)AEs is the
mean squared error3.

3.3.2 Multi-task learning

Solving a problem constrained to multiple objective functions is the object of
study of muticriterion optimization [Boyd and Vandenberghe, 2004]. A vector
optimization problem can be formalized as follows. Given a vector loss function
L(θ) = [L1, . . . , Lq]

T , whose components can be interpreted as q different scalar
objectives, to be minimized. In order to apply standard scalar optimization
methods, such as gradient descent, we can “scalarise” a multi-criterion problem
by forming a weighted sum objective, i.e.

L = αTL(θ) =

q∑
i=1

αiLi(θ), (7)

where αi represents a weighting coefficient for the i-th component of L(θ).
This weights are usually constrained to α ≤ 0 and

∑q
i αi = 1 . Using this

framework, it is possible to express the multi-task objective as minimizing a
joint loss function for both classification and autoencoding as follows

L(θ) = (1− αMT)LCL(θ) + αMTLAE(θ), (8)

where αMT is the multi-task weight coefficient and LCL = LCCE and LAE =
LMSE represent the loss functions for the classification and autoencoding tasks,
respectively.

3.3.3 Transfer of a CNN model from one task to another

Given a CNN with N layers used for classification, an CAE can be built as
follows. For layers lN−1, . . . l1, (i.e., all layers in the CNN except the classifi-
cation stage lN), build the mirroring decoding layer, corresponding to Eq. (5)

3See Eq. (15) in Appendix A.2.

12

if the encoding layer is a fully connected layer, Eq. (6) if the encoding layer is
a convolutional layer or an unpooling (upsampling) layer if the encoding layer
is a max-pooling (subsampling) layer. Conversely, given a CAE with 2(N − 1)
layers, a CNN classifier can be built by removing the decoding layers from the
CAE (layers lN to l2(N−1)) and appending a fully connected layer with with as
many softmax units as the desired number of classes.

In order to reduce the degrees of freedom, in the transfer of a model from
one task to another, we do not use biases in the decoding layers of a CAE built
from an autoencoder. This guarantees that only the weights (present in both
models) are responsible for learning the task.

3.4 Strategies for conceptual change in CNNs

In this Subsection, we propose a number of strategies for adapting learned rep-
resentations in response to new tasks. For clarity, we label each choice with a
keyword, and refer to the final strategies as a combination of keywords, listed
at the end of this section.

3.4.1 Two baselines

There are two obvious baseline approaches to the adaptation of a model to a
new task. One is to make no changes to the model upon the change of task. In
this case, the only change is that the training data of the old task is replaced
by the training data of the new task.

A practical issue is that a new task implies a new interpretation of the
outputs, and possibly a different number of outputs. Reusing the parameters of
the output layer for the new task raises the question of how the output variables
for the old task should be mapped to those of the new task, a mapping that is
necessarily arbitrary. For this reason, when we reuse the parameters of a prior
model, we replace its output layer (the rightmost layer in Figure 2, page 11)
with a new layer, initialized with random parameter values. Ignoring this detail,
we refer to this baseline strategy as REUSE ALL.

Another, contrary approach is to altogether ignore the representations learned
on the prior task, and start with a randomly initialized model to learn the new
task. This can be regarded as a case of infinite plasticity, where the new task
forms the representations without any trace of the representations that were
learned in the prior task. This strategy will be referred to as RESET.

3.4.2 Selective reuse of the prior model: keep convolutional filters

Considering the dynamics of learning, REUSE ALL may not be ideal, since it
starts learning task 2 with a model that is specialized on task 1. It may take
more effort to “unlearn” aspects of task1 that are irrelevant for task 2, than to
learn task 2 from scratch.

However, if the data in task 1 and task 2 are similar in nature, it is likely
that the data have at least some common structure. For example, in the case of
natural images depicting different classes of objects, it is likely that certain low
level representations, such as local edges in natural images, are useful for dif-
ferent tasks, such as the recognition of different object classes. Different classes
of objects may involve different constellations of similar forms. For example,

13

a dark round shape may represent wheels on a car, portholes in a ship, or the
eyes of an animal.

In the current experiment, this observation inspires an adaptation strategy
where the convolutional filters — representing the low level representations —
are preserved across tasks, whereas the rest of the network is re-initialized to a
random state. This option is referred to as REUSE CF.

3.4.3 Prior regularisation

A strategy for domain adaptation proposed by Chelba and Acero [2006] is to take
a maximum a-posteriori approach to the estimation of the model parameters for
the new task, where the model learned on the first task provides a prior estimate
of the parameters. This prior serves as a regulariser for the parameters.

Standard parameter regularisation schemes are based on the assumption
that the parameters θ follow a zero-mean gaussian distribution, that is p(θ) ∼
N (0, 1

λI), leading to the addition of a regularisation term λ
2 ||θ||

2
2 to the standard

expression for the loss, in Equations (15) and (16), page (28).
The prior proposed by Chelba and Acero [2006] is:

p(θ) ∼ N (θold ,
1

λ
I), (9)

a gaussian distribution around the parameters θold that were learned on the
first task. This assumption leads to an alternative loss function LPR, including
the prior regularisation (PR) term [Daumé III, 2007]:

LPR(θ) = L(θ) +
λ

2
||θold − θ||22. (10)

In the current experiment, the prior regularisation is applied to the convo-
lutional filters, and used in combination with the RESET option; it is referred
to as RESET PRF.

3.4.4 A note on random initialization

The idea of investigating the variance of the layer outputs to improve weight ini-
tialization for deep learning was introduced in [Glorot and Bengio, 2010]. This
result has motivated the search for careful initialization, rather than unsuper-
vised pretraining of networks with methods such as RBMs, thus representing
a considerable speedup in the training of neural networks . Glorot and Ben-
gio [2010] suggest that keeping the layer-to-layer transformations such that the
singular values of the Jacobian matrices associated with each layer4 are approx-
imately 1 is equivalent to keeping the ratio of the average activation variance
going from layer y(l) to layer y(l+1). This result implies that the random ini-
tialization of the model parameters for each layer depends on the nonlinear
activation function and the size of the layer. The main intuition behind this
initialization strategy is that if the network parameters are initialized to small,
the output shrinks while passing through each layer, and eventually being to
small. On the other hand, if the network parameters are too large, the output
of each layer keeps growing, until the output of the network is saturated.

4the Jacobian matrix associated with the l-th layer is given by J(l) = ∂y(l+1)

∂y(l) .

14

RESET Initialize parameters with random values
RESET PRF Prior regularisation on convolutional filters
REUSE ALL Initialize all parameters (except output layer)

from prior model
REUSE CF Initialize only convolutional filter parameters

from prior model
(CL) Prior model trained as classifier
(AE) Prior model trained as autoencoder
(MT) Multi-task: Prior model trained simultaneously

as classifier and autoencoder

Table 1: Labels denoting adaptation strategies, and their meaning, as used in
the results. The labels in parentheses represent prior models, to be used in
conjunction with one of the adaptation strategies

We use the same random initialized parameters across adaptation strategies
to rule out initialization as a noise factor for each run of the experiment.

4 Experiment

The adaptation strategies are compared on three different data sets, described
in Section 4.1. For each data set the following procedure is followed.

1. The data set is split into a source and a target domain, as described in
Section 3.1. For the specific partitioning per data set, see Section 4.1

2. A model is trained in the source domain for each of three tasks: classifica-
tion, autoencoding, and the multi-task of simultaneous classification and
autoencoding

3. A model is trained in the target domain for each of two tasks: classifica-
tion, and autoencoding. For each adaptation strategy, two training runs
are realized

4. Each model is evaluated on the target test set during training, in order
to monitor adaptation. Per adaptation strategy, the results of the two
training runs are averaged, in order to reduce the impact of random effects

A schematic overview of the above process is given in Figure 3. Since the
above process produces a multitude of models, each trained under different con-
ditions, we will refer to them using combinations of labels denoting the adapta-
tion strategy used, and labels denoting the prior model used by the adaptation
strategy. The labels are listed in Table 1.

Since we are interested in adaptation methods that allow for a quick adap-
tation of a model from the source task/domain to the target task/domain, we
intentionally limit the size of of the training (and validation) set in the target
domain. The scarcity of training samples makes it harder for the model to
adequately generalize in the target domain, and thus it increases the potential
benefit of adapting a model from another domain (although the actual benefit
of course depends on the resemblance of the domains).

15

tasks: classifier autoencoder
multi-task
(class. +
autenc.)

evaluate while training

reset prior regularization on
convolutional filters

reuse all reuse convolutional
filters

train
data

source

train
data
target

test
data
target

valid.
data
target

Figure 3: Schematic overview of the experiment for a single data set; grey
rounded boxes represent training methods, circles represent models, document
shapes represent data instances, and the white rounded box represents the eval-
uation method

4.1 Data Sets

MNIST The Mixed National Institute of Standards and Technology (MNIST)
database consists of handwritten digits collected by American high school stu-
dents and employees of the United States Census Bureau [LeCun et al., 1998].
This database constitutes one of the most used data sets for benchmarking
machine learning algorithms [Bishop, 2006]. The MNIST consists of 70,000
gray-scaled images, rescaled to fit in a 20 × 20 pixel box, and then centred in
a 28 × 20 box. For these experiments, MNIST was divided into two subsets,
namely Data Set 1, consisting of digits {0, 1, 2, 3, 4}, and Data Set 2, consist-
ing of digits {5, 6, 7, 8, 9}. The training set is divided into 50,000 examples for
computing the parameter updates, 10,000 examples for validation and 10,000
examples for testing. Data Set 1 contains 25,538 examples for training, 5,058 for
validating and 5139 for testing. For Data Set 2, 10 samples per class were ran-
domly selected for both training and validating, making a total of 50 examples
for training, 50 for validating and 4861 for testing.

CIFAR-10 The CIFAR-10 is a labelled subset of the 80 million tiny images
data set collected by Krizhevsky, Nair and Hinton [Krizhevsky, 2009]. This data
set has been used to evaluate the performance of algorithms in machine learning
and computer vision. CIFAR-10 consists of 60,000 32×32 colour (RGB) images

16

divided into 10 classes, that comprising vehicles and animals. In this paper,
Dataset 1 was chosen to include all instances of classes “airplane”, “automobile”,
“bird”, “cat”, and “deer”, while Data Set 2 consists of classes “dog”, “frog”,
“horse”, “ship”, and “truck”. Each training set was split into training and a
validation sets, consisting in 75% (37,500 examples) and 25% (12,500 examples)
of the data, respectively, while the test set contains 10,000 examples. Data
Set 1 consists of 18,681, 6,319 and 5,000 examples, respectively for training,
validating and testing, while Data Set 2 contains 10 randomly selected samples
per class for training and 10 randomly selected samples per class for testing, to
make to make a total of 50 training examples, 50 validating examples and 5,000
examples for testing.

Composers As an application of the proposed methods in a musical domain,
a data set consisting of excerpts of musical pieces of the baroque and classical
periods was used. These excerpts are represented as piano-rolls, i.e., images
where each pixel in the y axis corresponds to a musical note (using the MIDI
note number convention), and each pixel in the x axis represents a unit of time.
The scores where taken from Muse Data database5, an electronic library of
classical music scores created by the Center for Computer Assisted Research in
the Humanities at Stanford University. Each excerpt has a length of 50 quarter
notes, with a sample rate of a 32nd note (an 8th of a quarter), with a hop size
of 10 quarter notes between contiguous windows. All pieces have been centred
to fit in a MIDI range of 68 notes. To signalize the end of a note, the its last
32nd is left blank. Data Set 1 consists of a selection from excerpts from G. P.
Telemann’s Cantatas, J. S. Bach’s Cantatas and G. F. Händel’s Concerti Grossi
and Trio Sonatas, while Data Set 2 consists of excepts from string quartets by
F. J. Haydn and W. A. Mozart. All excerpts coming from a single piece6 appear
only in either the training, validation or test sets, i.e., there are no pieces that
appear on more than one data set. There are a total of 2073 training examples,
1393 validation examples and 993 testing examples, with Data Set 1 containing
1141, 755 and 541 examples for training, validating and testing, respectively
and Data Set 2 consisting of 10 randomly selected samples per class for training
and 10 randomly selected samples per class for validation, to make a total of 20
examples for training, 20 examples for validating and 452 examples for testing.

4.2 Model training

All models were trained using RMSProp [Dauphin et al., 2015], a derivative of
the traditional backpropagation algorithm. This method is a mini batch vari-
ant of stochastic gradient descent that adaptively adjusts the learning rate by
dividing the gradient by an average of its recent magnitude. In order to ac-
celerate gradient descent, we use Nesterov’s method for accelerating gradient
descent [Sutskever et al., 2013]. In order to avoid overfitting, several strate-
gies are used, including l2-norm weight regularisation, enforcing sparseness in
layer activations, early stopping and dropout. Regularisation of the l2 norm en-
forces sparse parameters [Bishop, 2006], while the sparsity in layer activations
was enforced using Hoyer’s sparseness measure [Hoyer, 2004]. Dropout prevents

5http://www.musedata.org
6Movements of a work are considered individual pieces.

17

http://www.musedata.org

overfitting and provides a way of approximately combining different neural net-
works efficiently by randomly removing units in the network, along with all its
incoming and outgoing connections [Srivastava et al., 2014; Hinton et al., 2012].
The network architectures and hyper-parameters were empirically selected by
optimizing the models to their respective validation sets.

MNIST The classifier consists of a CNN with a convolutional layer with 32
kernels of size 5 × 5 and sigmoid activations (l1), followed by a max-pooling
layer with a pool size of 2 × 2 (l2). The convolutional stage is followed by a
classification stage consisting of a fully connected layer with 40 sigmoid units
and (l3) and a fully connected layer with 10 softmax units. Dropout is used
after the convolutional stage, i.e., after l2.

The learning rate for RMSProp is set to 10−5, Nesterov’s momentum to
0.5, the probability of dropout is set to 0.5, the regularisation coefficient is
0.001, the sparsity coefficient is set to 10−4, the target sparseness is 0.9 and
the batch size is 50. The network was trained for a maximum of 2000 epochs,
with a maximum of 200 epochs from the best result for early stopping. The
multi-criterion weighting coefficient is set to 0.01 in multi-task models.

CIFAR-10 The classifier consists of a CNN with a convolutional layer with
32 kernels of size 5× 5 and sigmoid activations (l1), followed by a max-pooling
layer with a pool size of 2 × 2 (l2). The classification stage consists of a fully
connected layer with 40 sigmoid units and (l3) followed by a fully connected
layer with 10 softmax units. As in the previous case, dropout is used after the
convolutional stage, i.e., after l2.

The learning rate for RMSProp is set to 10−5, Nesterov’s momentum to 0.5,
the probability of dropout is set to 0.5, the regularisation coefficient is 0.001,
the sparsity coefficient is set to 10−4, the target sparseness is 0.9 and the batch
size is 50. The network was trained for a maximum of 3000 epochs, with a
maximum of 200 epochs from the best result for early stopping. In multi-task
models, the multi-criterion weighting coefficient is set to 0.01.

Composers The classifier consists of a CNN with a convolutional layer with
9 kernels of size 9 × 9 and rectified linear activations (l1), followed by a max-
pooling layer with a pool size of 2×2 (l2), then a second convolutional layer with
5 kernels of size 5 × 5 with rectified linear activations (l3), followed by a max-
pooling layer with a pool size of 2×2 (l4). The convolutional stage is followed by
a fully connected layer with 256 rectified linear units and (l5) and fully connected
layer with 4 softmax units (l6), both conforming the classification stage. In a
similar fashion as in the previous cases, dropout is used after the convolutional
stage, i.e., after l4.

The learning rate for RMSProp is set to 10−6, Nesterov’s momentum to 0.5,
the probability of dropout is set to 0.5, the regularisation coefficient is 0.001,
the sparsity coefficient is set to 10−4, the target sparseness is 0.5 and the batch
size is 50. All networks was trained for a maximum of 2000 epochs, with a
maximum of 200 epochs from the best result for early stopping. For the models
solving the joint classifier and autoencoding task, the multi-criterion weighting
coefficient is set to 0.01.

18

5 Results and discussion

The results of the various adaptation scenarios and data sets are displayed
in Figures 4, 5, and 6. Figure 4 shows the classification accuracies for the
classification task T CL

t in the target domain Dt, for each of the three data sets.
The fact that the accuracy curves are rather noisy is because the classification
accuracy is not the training objective, but rather the categorical cross-entropy
of the model output with the one-hot representation of the class labels (plotted
in Figure 5). Furthermore, the occasional discontinuities in the curves are due
to the averaging over multiple runs, where some runs converge (and thus halt)
after fewer epochs than others.

The first baseline strategy (RESET) consists in a random re-initialisation
of all parameters (conform Section 3.4.4), meaning that no knowledge from the
source task Ts in the source domain Dt, is used at all. The second baseline
strategy (REUSE ALL), is to initialize the model with the parameters of the
model trained on Ts in the source domain Dt. Note that there are three source
tasks (CL, AE, and MT).

In Figure 5, there is a consistent trend that the REUSE ALL baseline strat-
egy is slow to adapt, independent of the source task. Interestingly, among the
REUSE ALL conditions (dotted lines), the adaptation of the autoencoder model
of the source domain—REUSE ALL (AE)—is more beneficial to learning the
target classification task than the adaptation of the classifier—REUSE ALL (CL)—
from the source domain. This may be an indication that the autoencoder learns
representations that are useful for encoding the data in general, whereas the clas-
sifier learns more specialised features that are useful primarily for recognising
the specific classes that happen to be in the source domain. To some degree, this
finding underlines the rationale for unsupervised pre-training [Erhan et al., 2010],
that learning to encode the data independent of any classification objective pro-
vides more robust representations (for subsequent classifcation) than driving the
representations by a classification objective (with different class labels) from the
start. The fact that the unsupervised-pretraining—REUSE ALL (AE)—does
not surpass the RESET strategy suggests that the distribution of the data that
the autoencoder has seen is not sufficiently representative for the target domain,
i.e. Ps(X) ̸= Pt(X).

The low loss values of REUSE ALL (AE) with respect to REUSE ALL (CL)
and REUSE ALL (MT) does translate into higher accuracy rates (Figure 4) for
the CIFAR and Composers data sets, but surprisingly, it does not for the MNIST
data set.

The REUSE CF strategy (Figure 5, dashed lines), which retains the first
layer of convolutional filters learnt from the source domain, but resets all other
parameters of the model, considerably speeds up adaptation to the target task
with respect to the RESET baseline. With this strategy, the adaptation from
the classification task in the source domain is generally most successful, but
even when adapting models from the AE and MT source tasks, the adaptation
is mostly quicker than RESET. A plausible explanation for this is that the
low level structure of the data is usually more general, whereas the higher level
structure (say, the configuration of lower level features into shapes) is more
specific to particular data categories.

For the autoencoding task T AE
t in the target domain Dt (Figure 6), the

REUSE ALL (AE) strategy leads to substantially better autoencoding results

19

from the start in the target domain, but as opposed to the other adaptation
strategies, the training of the model using this strategy does hardly improve the
autoencoding loss beyond its initial value. The REUSE ALL (CL) strategy on
the other hand, adapts much worse on than the RESET baseline on CIFAR and
MNIST, on a par with REUSE CF (CL).

The autoencoder task in the target domain of the Composers data set shows
a very different pattern (Figure 6, right). Here, all adaptation strategies outper-
form the RESET baseline that discards any knowledge from the source domain.
This may be an indication that the source and target domains in the Composers
data set have rather similar marginal distributions, i.e., Ps(X) ≈ Pt(X), giving
the adaptation strategies an advantage over the RESET baseline. An explana-
tion for this may be that there is a lot of structure in the musical data that is
common across the music of the different composers (tonal structure, rhythmi-
cal structure). The prevalence of this common structure would also explain the
rather low overall accuracy in the composer classification task (Figure 4, right).

The simultaneous learning of both autoencoding and classification in the
source domain appears to provide more useful knowledge to be transferred to
the autoencoding target task (Figure 6), than the classification target task (Fig-
ures 4, and 5). In the latter case, adaptation is more successful when the source
task is also classification.

In the prior regularization strategy (RESET PRF), the first layer convo-
lutional filters of a randomly initialised network are biased towards the filters
learned from the source domain and task. This regularization does improve a
bit upon the RESET baseline sometimes, but not very consistently, and the
gains are usually moderate.

One issue that we have not discussed is whether the asymptotic performance
of some strategies is substantially different from that of others. From the Figures
it is clear that broadly speaking, the adaptation strategies converge to a certain
range, even if there are individual differences. To make better judgements on
the asymptotic performance of the adaptation strategies however, it is necessary
to do more extensive experimentation, with longer training phases, more data
sets, and averaging results from more runs of the same condition. Moreover,
although the hyperparameters of the models (e.g. the number of convolutional
filters, the pooling size, regularisation constants) were selected through explo-
ration prior to the experiment, a more exhaustive study of the hyperparameters
may provide a better view on the value of the adaptation strategies. From
a computational point of view, this is a considerable undertaking, given that
the results presented here require several weeks of continuous computation on
multiple GPGPU-enabled machines.

20

100 101 102 103 104

Epochs on Target Train Set

0.0

0.1

0.2

0.3

0.4

0.5

0.6
A
cc

u
ra

cy
 o

n
 T

ar
g
et

 T
es

t
S
et

CIFAR
RESET
RESET PRF (CL)
RESET PRF (AE)
RESET PRF (MT)
REUSE ALL (CL)
REUSE ALL (AE)
REUSE ALL (MT)
REUSE CF (CL)
REUSE CF (AE)
REUSE CF (MT)

100 101 102 103 104

Epochs on Target Train Set

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy
 o

n
 T

ar
g
et

 T
es

t
S
et

MNIST
RESET
RESET PRF (CL)
RESET PRF (AE)
RESET PRF (MT)
REUSE ALL (CL)
REUSE ALL (AE)
REUSE ALL (MT)
REUSE CF (CL)
REUSE CF (AE)
REUSE CF (MT)

100 101 102 103 104

Epochs on Target Train Set

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

u
ra

cy
 o

n
 T

ar
g
et

 T
es

t
S
et

Composers
RESET
RESET PRF (CL)
RESET PRF (AE)
RESET PRF (MT)
REUSE ALL (CL)
REUSE ALL (AE)
REUSE ALL (MT)
REUSE CF (CL)
REUSE CF (AE)
REUSE CF (MT)

Figure 4: Classification accuracy (proportion of correctly classified instances) on the target test-set of the different data sets, for different
adaptation strategies. Curves are averaged over two runs. See table 1 (page 15) for an explanation of the legend

21

100 101 102 103 104

Epochs on Train Set 2

100

101
C
ro

ss
-E

n
tr

o
p
y

o
n
 T

ar
g
et

 T
es

t
S
et

CIFAR

RESET
RESET PRF (CL)
RESET PRF (AE)
RESET PRF (MT)
REUSE ALL (CL)
REUSE ALL (AE)
REUSE ALL (MT)
REUSE CF (CL)
REUSE CF (AE)
REUSE CF (MT)

100 101 102 103 104

Epochs on Train Set 2

10-1

100

101

C
ro

ss
-E

n
tr

o
p
y

o
n
 T

ar
g
et

 T
es

t
S
et

MNIST

RESET
RESET PRF (CL)
RESET PRF (AE)
RESET PRF (MT)
REUSE ALL (CL)
REUSE ALL (AE)
REUSE ALL (MT)
REUSE CF (CL)
REUSE CF (AE)
REUSE CF (MT)

100 101 102 103 104

Epochs on Train Set 2

10-1

100

101

C
ro

ss
-E

n
tr

o
p
y

o
n
 T

ar
g
et

 T
es

t
S
et

Composers

RESET
RESET PRF (CL)
RESET PRF (AE)
RESET PRF (MT)
REUSE ALL (CL)
REUSE ALL (AE)
REUSE ALL (MT)
REUSE CF (CL)
REUSE CF (AE)
REUSE CF (MT)

Figure 5: Classification loss (categorical cross-entropy) on the target test-set of the different data sets, for different adaptation strategies.
Curves are averaged over two runs. See table 1 (page 15) for an explanation of the legend

22

100 101 102 103 104

Epochs on Train Set 2

101

102

103
M

ea
n
 S

q
u
ar

ed
 E

rr
o
r

o
n
 T

ar
g
et

 T
es

t
S
et

CIFAR

RESET
RESET PRF (CL)
RESET PRF (AE)
RESET PRF (MT)
REUSE ALL (CL)
REUSE ALL (AE)
REUSE ALL (MT)
REUSE CF (CL)
REUSE CF (AE)
REUSE CF (MT)

100 101 102 103 104

Epochs on Train Set 2

101

102

103

M
ea

n
 S

q
u
ar

ed
 E

rr
o
r

o
n
 T

ar
g
et

 T
es

t
S
et

MNIST
RESET
RESET PRF (CL)
RESET PRF (AE)
RESET PRF (MT)
REUSE ALL (CL)
REUSE ALL (AE)
REUSE ALL (MT)
REUSE CF (CL)
REUSE CF (AE)
REUSE CF (MT)

100 101 102 103 104

Epochs on Train Set 2

102

103

104

M
ea

n
 S

q
u
ar

ed
 E

rr
o
r

o
n
 T

ar
g
et

 T
es

t
S
et

Composers
RESET
RESET PRF (CL)
RESET PRF (AE)
RESET PRF (MT)
REUSE ALL (CL)
REUSE ALL (AE)
REUSE ALL (MT)
REUSE CF (CL)
REUSE CF (AE)
REUSE CF (MT)

Figure 6: Autoencoding loss (mean squared error) on the target test-set of the different data sets, for different adaptation strategies.
Curves are averaged over two runs. See table 1 (page 15) for an explanation of the legend

23

6 Conclusions

When interacting with a dynamical and unpredictable environment, the ability
of an agent to easily adapt the conceptual space with which it interprets the
environment, is a strong advantage. As argued in Section 1.1, this adaptabil-
ity may also be one of the underlying mechanisms of creative behaviour. In
this document, we have described and evaluated several adaptation strategies
to transform learned representations optimized for a specific task in a specific
domain (the source task/domain), to another task in another domain (the target
task/domain). We have evaluated the strategies using a convolutional neural
network, on multiple data sets, comprising natural images, handwritten digits,
and classical music.

The results show that, across domains and tasks, adaptation strategies that
transform existing representations allow for a quicker adaptation to a new task
in a new domain than starting the representation learning from scratch. Al-
though there is no single adapatation strategy that is universally superior to
others, some clear patterns do emerge from the results. Firstly, when the target
task is classification, then a successful adaptation strategy is to keep the first
level convolutional filters (i.e. the lower level representations) from the source
task/domain, and reset the rest of the parameters. This strategy is even benefi-
cial when the source task is autoencoding, rather than classification. Secondly,
for the autencoding target task, the reuse of the full model (rather than just
the convolutional filters) is a successful strategy, in the sense that even from the
start, the task performance with that strategy is comparable with the asymp-
totic performance of other strategies. But in contrast to the other strategies,
this strategy does not substantially improve the model beyond the initial perfor-
mance. The experiments do not provide evidence for a strong advantage of the
prior regularization of the convolutional filters (Section 3.4.3), over the condition
where the model is trained from scratch with only standard regularization.

More elaborate experiments are required to provide firmer conclusions on
the merits of each of the adaptation strategies. In particular, a longer training
phase is necessary to provide better insight in the asymptotic behaviour of the
strategies.

Acknowledgement

The project Lrn2Cre8 acknowledges the financial support of the Future and
Emerging Technologies (FET) programme within the Seventh Framework Pro-
gramme for Research of the European Commission, under FET grant number
610859.

References

Allen, J. (2012). The Lives of the Brain: Human Evolution and the Organ of
Mind. Harvard University Press.

Atick, J. J. (1992). Could information theory provide an ecological theory of
sensory processing? Network, 3:213–251.

24

Baars, B. J. (2002). The conscious access hypothesis: origins and recent evi-
dence. Trends in cognitive sciences, 6(1):47–52.

Bacchiani, M. and Roark, B. (2003). Unsupervised language model adaptation.
International Conference on Acoustics, Speech and Signal Processing, 1:224–
227.

Barlow, H. (1989). Unsupervised learning. Neural Computation, 1(3):295–311.

Ben-David, S., Blitzer, J., Crammer, K., and Pereira, F. (2007). Analysis of
representations for domain adaptation. In Advances in Neural Information
Processing Systems 19.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning:
A review and new perspectives. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 35(8):1798–1828.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer
Verlag, Microsoft Research Ltd.

Boden, M. A. (1994). Précis of the creative mind: Myths and mechanisms.
Behavioral and brain sciences, 17(3):519–531.

Boden, M. A. (2004). The Creative Mind: Myths and Mechanisms, Second
Edition. Routledge, London, 2nd edition.

Boyd, S. P. and Vandenberghe, L. (2004). Convex Optimization. Cambridge
University Press.

Caruana, R. (1997). Multitask learning. Machine Learning, 28:41–75.
10.1023/A:1007379606734.

Chelba, C. and Acero, A. (2006). Adaptation of maximum entropy capitalizer:
Little data can help a lot. Computer Speech & Language, 20(4):382–399.

Csikszentmihalyi, M. (1996). Creativity: Flow and the Psychology of Discovery
and Invention. Modern classics. HarperCollinsPublishers.

Daumé III, H. (2007). Frustratingly easy domain adaptation. In Conference of
the Association for Computational Linguistics (ACL), Prague, Czech Repub-
lic.

Daumé III, H. and Marcu, D. (2006). Domain Adaptation for Statistical Clas-
sifiers. Journal of Artificial Intelligence Research, pages 101–126.

Dauphin, Y. N., de Vries, H., Chung, J., and Bengio, Y. (2015). RMSProp
and equilibrated adaptive learning rates for non-convex optimization. arXiv,
1502:4390.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio,
S. (2010). Why does unsupervised pre-training help deep learning? Journal
of Machine Learning Research (JMLR), 11:625–660.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. Proceedings of the 13th International Conference
on Artificial Intelligence and Statistics, pages 249–256.

25

Glorot, X., Bordes, A., and Bengio, Y. (2011). Domain adaptation for large-scale
sentiment classification: A deep learning approach. In Getoor, L. and Schef-
fer, T., editors, Proceedings of the 28th International Conference on Machine
Learning (ICML-11), pages 513–520, New York, NY, USA. ACM.

Hinton, G. E., Osindero, S., and Teh, Y. (2006). A fast learning algorithm for
deep belief nets. Neural Computation, 18:1527–1554.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R. (2012). Improving neural networks by preventing co-adaptation of feature
detectors. arXiv, 1207:580.

Hofstadter, D. R. (2008). Fluid Concepts and Creative Analogies: Computer
Models of the Fundamental Mechanisms of Thought. Basic Books.

Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness con-
straints. arXiv.org, page 8058.

Jiang, J. (2008). A literature survey on domain adaptation of statistical classi-
fiers. Technical report, University of Illinois Urbana-Champaign.

Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images.
Technical report.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classification
with Deep Convolutional Neural Networks. Advances in Neural Information
Processing Systems, pages 1106–1114.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324.

Masci, J., Meier, U., Cireşan, D., and Schmidhuber, J. (2011). Stacked Convo-
lutional Auto-Encoders for Hierarchical Feature Extraction. In Honkela, T.,
Duch, W., Girolami, M., and Kaski, S., editors, Artificial Neural Networks
and Machine Learning - ICANN 2011, pages 52–59.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
and Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning.
arXiv.org, page 5602.

Olshausen, B. and Field, D. (1996). Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature, 381:607–609.

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transac-
tions on Knowledge and Data Engineering, 22(10):1345–1359.

Schmidhuber, J. (2010). Formal theory of creativity, fun, and intrinsic motiva-
tion (1990–2010). Autonomous Mental Development, IEEE Transactions on,
2(3):230–247.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting.
Journal of Machine Learning Research, 2014(15):1929–1958.

26

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. E. (2013). On the impor-
tance of initialization and momentum in deep learning. In Proceedings of the
30th International Conference on Machine Learning, Atlanta, Georgia, USA.

Torrey, L. and Shavlik, J. (2009). Transfer learning. In Soria, E., Mart́ın, J.,
Magdalena, R., Martinez, M., and Serrano, A., editors, Handbook of Research
on Machine Learning Applications and Trends: Algorithms, Methods, and
Techniques. IGI Global.

van Hasselt, H., Guez, A., and Silver, D. (2015). Deep Reinforcement Learning
with Double Q-learning. ArXiv e-prints.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, King’s
College, Cambridge.

Weisberg, R. (1993). Creativity: Beyond the Myth of Genius. Books in psychol-
ogy. W.H. Freeman.

Widmer, G. and Kubat, M. (1996). Learning in the presence of concept drift
and hidden contexts. Machine Learning, 23(1):69–101.

Wiggins, G. and Forth, J. (2015). Idyot: A computational theory of creativity
as everyday reasoning from learned information. In Besold, T. R., Schorlem-
mer, M., and Smaill, A., editors, Computational Creativity Research: Towards
Creative Machines, volume 7 of Atlantis Thinking Machines, pages 127–148.
Atlantis Press.

Wiggins, G. A. (2006). A preliminary framework for description, analysis and
comparison of creative systems. Knowledge-Based Systems, 19(7):449–458.

27

A Activation and Loss functions

In this section, we provide definitions of the nonlinear activation and loss func-
tions mentioned in the main text.

A.1 Nonlinear activation functions

The follow nonlinear activation functions are defined as scalar functions as
f : R 7→ R. Following conventions in the machine learning literature [Bishop,
2006], when applied to general tensors (i.e., vectors, matrices or higher order
tensors), these functions take the form f : RN1×···×Np 7→ RN1×···×Np , with the
function being applied elementwise.

1. Sigmoid

σ(y) =
1

1 + exp(−y)
(11)

2. Hyperbolic tangent

tanh(y) =
exp(y)− exp(−y)

exp(y) + exp(−y)
= 2σ(2y)− 1 (12)

3. Rectified Linear Units

ReLU(y) =

{
y for y > 0
0 otherwise

(13)

4. Softmax. Given an input y ∈ RN1×···×Np , the softmax activation function
is given by

Softmax(yj1...jp) =
exp(yj1...jp)∑N1

k1=1 · · ·
∑Np

kp
exp(yk1...kp)

, (14)

where yj1...jp is the j1 . . . jp-th element of y.

A.2 Loss functions

Let X = {x1, . . . ,xN} be a set of inputs, whose corresponding outputs are given
by y(xi;θ) and T = {t1, . . . , tN} a set of targets, with both y, t ∈ RN1×···×Np .

1. Mean Squared Error

LMSE(θ) =
N∑

n=1

∥t− y(xn;θ)∥22 (15)

2. Categorical Cross Entropy

LCCE(θ) = − 1

N

N∑
n=1

N1∑
k1=1

· · ·
Np∑

kp=1

tn;k1...kp log
(
yk1...kp(xn;θ)

)
, (16)

where tn;k1...kp represents the k1 . . . kp-th component of the n-th element
of set T.

28

	Introduction
	From adaptive representations to creative behaviour

	Related work
	Transfer learning
	Domain adaptation
	Multi-task learning
	Concept drift

	Method
	Problem description
	Evaluation criteria
	Convolutional Neural Networks
	Convolutional autoencoders
	Multi-task learning
	Transfer of a CNN model from one task to another

	Strategies for conceptual change in CNNs
	Two baselines
	Selective reuse of the prior model: keep convolutional filters
	Prior regularisation
	A note on random initialization

	Experiment
	Data Sets
	Model training

	Results and discussion
	Conclusions
	Activation and Loss functions
	Nonlinear activation functions
	Loss functions

