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ABSTRACT
Semantic embeddings play a crucial role in natural language-based
information retrieval. Embedding models represent words and con-
texts as vectors whose spatial configuration is derived from the
distribution of words in large text corpora. While such represen-
tations are generally very powerful, they might fail to account
for fine-grained domain-specific nuances. In this article, we in-
vestigate this uncertainty for the domain of characterizations of
expressive piano performance. Using a music research dataset of
free text performance characterizations and a follow-up study sort-
ing the annotations into clusters, we derive a ground truth for a
domain-specific semantic similarity structure. We test five embed-
ding models and their similarity structure for correspondence with
the ground truth. We further assess the effects of contextualizing
prompts, hubness reduction, cross-modal similarity, and k-means
clustering. The quality of embedding models shows great variabil-
ity with respect to this task; more general models perform better
than domain-adapted ones and the best model configurations reach
human-level agreement.

CCS CONCEPTS
• Information systems → Test collections; Similarity mea-
sures; Top-k retrieval in databases; • Applied computing→
Performing arts.
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1 INTRODUCTION
Semantic embeddings are a foundational concept in Natural Lan-
guage Processing (NLP). NLP embedding models map words and
their contexts to high-dimensional vector spaces while encoding as
much of the semantic information as possible. Computers process
such numerical datamore readily than text, and vector spaces enable
simple yet powerful similarity representations. Semantic embed-
dings enable a wide a variety of downstream tasks, from retrieval
to classification to context-enhanced few shot learning. State-of-
the-art (SOTA) embedding models are trained on vast datasets of
natural language covering many domains and disciplines, under-
pinned by a general distributional hypothesis — that words with
similar meanings occur in similar contexts.

This hypothesis and its corresponding inductive bias lead to
one of the major open challenges related to semantic embeddings:
whether context dependence, polysemy, and fine-grained domain-
specific idiosyncracies are adequately represented by general pur-
pose semantic embeddings. Specialized domains of language use
such as talk of specific arts might exhibit incommensurable associ-
ations and similarites, e.g., a bright piano sound evokes different
meanings than a bright student. While specific domains and their
possibly nuanced differentiations do occur in large datasets, they
only occur in their specific context, where the distributional hypoth-
esis runs counter to different encoding. In other words, if certain
emotionally dissimilar adjectives (happy, sad) only occur in sim-
ilar contexts, they end up close in the embedding space despite
opposing meanings.

In this article, we address the question whether general semantic
embeddings can recover similarity relations in a specific domain of
language use. In particular, we are interested in adjectival spaces
used in the characterization of expressive performance of West-
ern classical solo piano music. The underlying motivation is the
possibility of expressivity- or emotion-based music retrieval using
intuitive verbal queries, which would be a valuable and sought-after
service in the digital music world.

Characterizations of expressive performance get at the finest
details of performance technique, expression, timbre, emotions,
metaphors, and associations. Note that it’s crucially not the piece
that is being described by such characterizations, but its expressive
interpretation and rendition.
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Figure 1: Multidimensional Scaling (MDS) of the term data based the equally weighted pile group one, pile group two, and
performance similarities. The legend on the left lists all piles of both groups, first the group number, then the names the
musicians assigned them. Each term of the 150 in our ground truth data is shown in the scatter plot to the right and colored by
the two piles it was sorted into, one for group one (large dots), one for group two (small dots). The musicians did not rate any
similarities between piles, the color progressions for the piles do not encode closeness.

Characterizations of expressive performance are both highly
specific as well as very important to domain experts such as per-
formers, teachers, and committed listeners. In fact, a crucial skill for
aspiring performers consists in developing a sensibility as well as a
language for performance nuances. Likewise, discriminating classi-
cal music lovers are highly sensitive to interpretation differences
and can be very articulate in describing aspects of a performance
that they don’t like.

We use a dataset of terms used for the characterization of ex-
pressive performance in a large scale listening study. The dataset
is annotated with similarity clusters of 150 terms created by two
groups of domain experts in Western classical music performance.
This data gives us an ecologically valid adjectival space of domain

specific terms along with expert-annotated similarity annotations
— an ideal experimental reference for general embedding spaces.

In this article, we take this reference similarity space of 150 terms
related to the domain of expressive performance characterization,
and compare it with embeddings for these terms derived from five
embedding models by means of precision at k metrics. Furthermore,
we present experiments investigating several factors affecting the
embedding spaces: adding context to terms, reducing hubness in
the embedding spaces, comparing audio to text embeddings, and a
comparison of different clusterings in the embedding spaces.
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Figure 2: Box plots of distributions of pairwise similarities in various embedding spaces. The main embedding models tested
are labelled as EWE, CLAP, ADA, GTE, and BGE [1, 2, 13, 21, 25]. The three leftmost distributions relate to cross-modal audio
and text embeddings as discussed in Section 4.2 and the distributions labeled with "context" are addressed in Section 4.4.

2 RELATEDWORK
The literature on semantic embeddings is vast and multifaceted,
with many tasks and benchmarks making use of suitable language
representations. For a recent overview and online benchmark-
ing results, we refer to the Massive Text Embedding Benchmark
(MTEB) [23, 24].

In our work, we investigate five models which we introduce
in the following. These models cannot represent the whole of the
state of the art, however, we do think they represent interesting
models for our purpose. We use three models among the top per-
formers in the MTEB. First, the general text embeddings (GTE)
model "gte-large" developed by the Alibaba DAMO Academy [21].
This model is trained contrastively in both an unsupervised and a
supervised fine-tuning fashion and as of September 2023 leads the
MTEB leaderboard for semantic text similarity (STS) tasks. Second,
we use the BAAI General Embeddings (BGE) model "bge-large-
en" [2]. This model currently tops the overview MTEB leaderboard
with minimal background information on the type of model and
training available. Thirdly, we use OpenAI’s general purpose em-
bedding model "text-embedding-ada-002" offered at their API since
December 2022 [7, 25]. Not many architectural details about this
model are known, however, it performs in the top 20 models both in
the overview as well as for STS tasks as of September 2023. Further-
more, it’s likely one of the most widely used models in commercial
applications.

We extend the model list with two specialized models: a pure
word embedding model for emotion-enriched word embeddings
(EWE) [1], trained to mitigate the inductive bias that emotion term
embeddings are liable to be influenced by, and Microsoft’s cross-
modal text-audio embedding model (CLAP) [13], trained to embed
both text and audio excerpts in the same space for cross-modal re-
trieval. We assume these models to be better suited to the language

in the domains of audio and emotion description, respectively, both
of which overlap with expressive performance characterization.

The last year has seen several publications investigating retrieval
of perceptual structure information from large language models
(LLM), and in particular using the model chatGPT. Most closely
related to our proposal are ratings of timbral similarity [32], music
similarity [17] , and general sensory judgment dimensions [22], all
of which find evidence for the recovery of human annotations by
chatGPT, albeit not at human level.

Our reference data is based on free text descriptions of expressive
piano performance. People involved with music take pleasure in
talking about music. This is no different for expressive performance
of Western classical solo piano. In doing so they develop a rich
vocabulary that relates to different aspects of performance such as
evaluative/axiological terminology, emotions, metaphors, playing
technique, or timbre descriptors. In music research, these aspects
are often addressed separately, and with a generally reductionist
approach. That is, researchers are interested in the identification
of underlying factos, perceptual categories, and their relations to
acoustic features [20, 26]. This is somewhat opposed to our ap-
proach, where no reduction of the semantic space is pursued. Nev-
ertheless, we want to briefly outline two relevant areas of inquiry:
emotions and timbre.

There exists a substantial literature investigating the emotional
language related to music [11, 18]. Among prominent models are
categorical models such as the Geneva Emotional Music Scale
(GEMS) [34] and the dimensional valence and arousal model [27].
Crucial questions relate to the question whether musical emotions
are perceived or induced [33] or the paradoxical enjoyment of nega-
tive emotions such a sadness [12]. Metaphors are another common
linguistic device in the characterization of music.We refer to Schaer-
laken et al. [30] who identified five main factor in their analysis of
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Figure 3: Left plot: aP@k for k ∈ {1, ..., 49} for several embeddings models against the ground truth similarities. Right plot:
aP@k of 45 performance embeddings represented as CLAP audio embeddings and as mean CLAP text embeddings of terms
(with and without context prompts).

metaphorical attributed (GEMMES) and connected their perception
to the GEMS [29].

Timbre is crucial topic in performance research and music psy-
chology [14, 19, 28]. Timbre is increasingly conceptualized as con-
trolled expressive performance attribute, i.e., as something that
performers can influence with playing techniques and gestures.
Most relevant to our work are several piano timbre description
experiments by Bernays et al. [3–6] which brought five to eleven
categorical terms to the fore. For our experiments, we rely on as
many terms with associated similarity annotations as possible with-
out reduction to principal factors or dimensions, which we find in
the con espressione dataset and its pile sorting extension, detailed
in Section 3.1.

3 METHODS
For our experiments we require an embedding space of words
(for simplicity: adjectives) with associated ground truth similarity
ratings as a type of ground truth reference data. We also need
several SOTA embedding models and the metrics by which we can
meaningfully compare the resulting similarity structures. In this
section, we introduce these components.

3.1 Con Espressione Data
The Con Espressione Dataset (CED) collected descriptions of piano
performances through an online questionnaire [9, 10]. Participants
listened to 45 different performances by famous pianists of nine
excerpts of Western classical piano pieces. The participants were
shown the prompt: ’Please think of words (if possible, adjectives)
that best describe the character of each performance to you.’ and
a text field allowed for free text answers (as many words as they
liked, in a language of their choice). They were further instructed
to concentrate on the performance aspects and not on the piece

of music itself. The CED characterizations contains 3,166 terms, of
which 1,415 are unique. Consequently, the CED consists of very
loosely structured text data for which relational semantic ground
truth, i.e. which answers refer to the same aspect or idea, is largely
missing.

To mitigate this, a follow-up experiment was designed [8]. In two
separate sessions, groups of professional musicians/musicologists
sorted the 150 most often occurring terms in the CED into piles.
These piles should cluster terms that describe a common expressive
character. The type of similarity and number of piles were left open.
The two groups of four professional musicians each sorted the
terms into 25 and 19 piles, respectively, and gave a name to each
pile, in the form of an adjective that best summarizes the common
meaning of the words associated with the pile. 1

3.2 Embeddings and Similarities
We use the same 150 terms as our adjectival space. To derive ground
truth similarities between the termswe use both term co-occurrence
in piles (from both groups) and co-occurrence for performance
descriptions. For each of the pile groups, we create a similarity
matrix where pairwise similarities of terms within a pile are set to
one, outside the pile to zero. Term similarities are also computed
based on the CED directly, where two different terms that occur in
the characterization of the same performance are assumed more
similar than if they are used for different performance. We again
compute a similarity matrix where co-occurrence of two terms in
the same performance description sets the similarity to one, else
to zero. We weigh each source of similarity annotations the same,
that is, the similarities from pile group one, pile group two, and
performance description are summed up and finally normalized.

1An interactive interface for the exploration of piles, terms, and performances is
available at: https://cpjku.github.io/expressivity/
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Figure 4: Left plot: relative change in aP@k brought about by the inclusion of contextualizing prompts. Right plot: relative
change in aP@k due to hubness reduction at neighborhoods of size eight.

Figure 1 illustrates the resulting similarity structure. The legend on
the left lists all piles of both groups (with the names the musicians
gave them) the scatter plot on the right shows a low-dimensional
approximation of the term similarities.

We compare our ground truth similarities with similarities for
the same adjectival space, i.e., the same 150 terms, embedded using
five different embedding models: ADA (embedding dimensionality
1536), CLAP (1024), EWE (300), GTE (1024), and BGE (1024), detailed
in Section 2.

3.3 Metrics
We assess the similarities using several metrics. All similarities are
cosine similarities in the embedding spaces:

𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑥,𝑦) = 𝑥 · 𝑦
|𝑥 | |𝑦 | (1)

for 𝑥 and 𝑦 term embeddings in the same space.
Our main evaluation metric is the average precision at k (aP@k)

for k nearest neighbors. For each term x in our adjectival space
S, we compute two neighborhoods of size k, one according to our
ground truth embedding space U (knn(x,U)), and one according to a
test embedding space V (knn(x,V)). We then compute the precision
of retrieval of the U-neighborhood by the V-neighborhood:

𝑎𝑃@𝑘 (𝑈 ,𝑉 ) = 1
|𝑆 |

∑︁
𝑥∈𝑈

|𝑘𝑛𝑛(𝑥,𝑈 ) ∩ 𝑘𝑛𝑛(𝑥,𝑉 ) |
𝑘

(2)

where knn(x,U) denotes the set of k nearest neighbors of x according
to the embedding space U. We choose aP@k over the more common
Spearman correlation of embedding similarities for STS tasks [23],
for its capacity to naturally differentiate each level of neighborhood
size k and its rank-agnostic behavior within the neighborhoods,
which corresponds to the ground truth pile sortings.

In Section 4.5, we compare the agreements between the pile
groups (ground truth sets of clusters) with k-means clusterings in

the embedding spaces. For this purpose, we compute the overlap co-
efficient between sets of clusters according to different similarities.
In particular, we compute the average maximal overlap between
two different sets of clusters C1 and C2 as:

𝐴𝑣𝑀𝑎𝑥𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝐶1,𝐶2) =
1

|C1 |
∑︁

𝐶1∈C1
max
𝐶2∈C2

|𝐶1 ∩𝐶2 |
𝑚𝑖𝑛( |𝐶1 |, |𝐶2 |)

(3)

Note that this metric is not symmetrical in C1 and C2.

4 EXPERIMENTS AND RESULTS
This section presents experiments addressing structural correspon-
dences between similarity spaces. After a main experiment in Sec-
tion 4.1, we investigate more fine-grained issues regarding the
correspondence of text and audio embeddings in Section 4.2 the
effects of hubness in the embedding spaces in Section 4.3, the effects
of contextualized terms in Section 4.4, and the overlap in clusterings
in Section 4.5.

4.1 Similarity Structure Correspondence

To what extent do the models’ embedding spaces correspond
to the similarity relations derived from expert annotations? We
answer this question using aP@k values. However, we first make
a few general observations about the distributions of similarities
without reference to structural considerations.

Figure 2 shows box plots of the distributions of pairwise simi-
larities in several spaces under scrutiny. Note that for all language
models (labelled as EWE, CLAP, ADA, GTE, and BGE) the embed-
dings are very similar, with values rarely falling below 0.7 and mean
values above 0.8. This illustrates the inductive bias of the embed-
dings as these terms are likely to occur in similar and sometimes
very particular domains.

Figure 3 (left) shows the performance of each embedding in terms
of its approximation of the neighborhood structure of a reference
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embedding. For neighborhood sizes k between one and 49, the
aP@k of each embedding space is computed against our ground
truth data. The models are are clearly ranked for all k, from top
to bottom: ADA, GTE, BGE, CLAP, and EWE. A yellow diagonal
denotes a random baseline. With the exception of EWE are all
models significantly better than random. The upper bound of the
95% confidence interval (not shown) of the random baseline is
approximately 0.02 above the baseline itself at k=1 and gets closer
to the baseline as k increases.

A blue line indicates the only values that are not compared
against the ground truth. Instead it compares similarities only based
on pile group 1 (co-occuring terms in a pile have similarity one,
else zero) with similarities only based on pile group 2. This is added
as an indication of where human agreement about similarity might
fall, albeit with some caveats: The values are only really meaningful
for k in the approximate size of piles (roughly 5-10 terms/pile). For
smaller k, the piles do not encode greater or lesser similarity of
terms within a pile, all values are one and an arbitrary ordering was
created by addition of some minimal noise. For larger k, the piles do
not encode greater or lesser similarity for terms beyond the pile, all
values are zero and again minimal noise was added for an arbitrary
ordering. It’s also not possible to compare these similarities against
the ground truth since they were part of the creation of the ground
truth which distorts the result unfairly. The blue line segment for k
= 5 - 10 does give an indication that none of the models reach the
agreement of two groups of expert annotators.

4.2 Audio vs. Text Embeddings

The CLAP model is trained to minimize distances between cor-
responding text and audio embeddings which makes it possible to
compare against audio embeddings of the 45 performances that are
characterized by the 150 terms in the con espressione data. The
three leftmost distributions in Figure 2 are related to this approach:
"audio - audio" denotes the pairwise similarities between audio
embeddings, "s terms - audio" shows cross-modal similarities be-
tween 150 individual terms and 45 performances, and "p terms -
audio" shows cross-modal similarities between 45 performances
averaged from their corresponding term embeddings (the terms
used to describe the performance in the CED) and 45 performance
recording embeddings. Figure 3 (right) shows the latter in an aP@k
plot; the 45 performances are embedded in both in the text spaces
of two different text models (see Section 4.4 for a discussion on the
"context" model) and in the audio space. The values are notably
lower, for several k the values are not significantly better than the
random baseline, indicating that either the audio or the text space
do not have the granularity to represent these minute differences.
We conjecture that the audio model is the more likely source of
misalignment. After all, all performance recordings can reasonably
be classified as "classical solo piano" which is closer to the level of
precision to be expected from an unspecific audio representation
model trained on a variety of (non-)musical audio [13].

4.3 The Effect of Hubness

The existence of hubs has repeatedly been found a source of dis-
torted similarity structures, especially in high-dimensional spaces [15].

Model nbhd Skewness Robinhood

ADA 4 0.99 0.88 0.25 0.21
CLAP 4 1.09 0.52 0.22 0.19
GTE 4 1.11 0.91 0.24 0.20
BGE 4 1.76 1.14 0.32 0.29
RB 4 0.54 0.40 0.17 0.13
ADA 8 1.12 0.58 0.25 0.21
CLAP 8 1.19 0.54 0.25 0.23
GTE 8 1.13 0.44 0.24 0.21
BGE 8 1.97 1.63 0.39 0.36
RB 8 0.37 0.17 0.13 0.11
ADA 16 0.81 0.32 0.26 0.24
CLAP 16 1.21 0.70 0.25 0.23
GTE 16 0.67 0.24 0.25 0.24
BGE 16 1.83 1.61 0.43 0.42
RB 16 0.25 0.04 0.10 0.08

Table 1: Results of hubness measurement and reduction. Val-
ues for each model (RB random baseline) are presented for
three different neighborhood sizes (nbhd). All skewness and
robinhood values are doubled, left original, right after hub-
ness reduction.

Hubs are points that appear too often in k nearest neighborhoods
of other points and as such are liable to influence the aP@k. In this
experiment we address the influence of hubs for four models.

We first measure hubness as both skewness of the k-occurrence
histogram (higher skewness indicates more hubness) and as robin-
hood index (which indicates the percentage of slots in nearest neigh-
bor lists would need to be redistributed for equal distribution). We
carry this computation out for three neighborhood sizes (4,8, and
16) and compute hubness reduction using an approximate mutual
proximity method [31]. For algorithmic details regarding hubness
measurement and reduction we refer the reader to Feldbauer et
al. [16].

Table 1 shows the results of hubness reduction. For each metric
(skewness, robinhood) we note two values for each setting: before
(left) and after (right) hubness reduction. Several models show
significant hubness (skewness > 1.0, robinhood > 0.25), with BGE
being a negative outlier, and they almost universally benefit from
reduction.

What does this mean for similarity structure recovery against the
ground truth? Figure 4 (right) shows the relative change in aP@k
for 4 models after hubness reduction at neighborhood size eight.
This neighborhood was chosen for being crucial against ground
truth based on piles, which on average have approximately this size.
Notably, hubness reduction leads to a decrease for k less than the
set neighborhood. For values around eight, hubness reduction uni-
versally leads to an increase in performance of about 20%, enough
to boost the highest performing models an the league of the expert
agreement baseline in this crucial area (see Figure 3 on the left, see
section 4.1).

4.4 The Effect of Context
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Figure 5: Visualization of the convex hull of terms of each
pile as embedded in the ground truth data. MDS dimension
reduction for illustrative purposes only, 8+ dimensions are
required to represent the space with minimal loss of infor-
mation (<10% reduction in aP@k against original data). The
pile centers are shown as average term embedding positions
and annotated with the pile names given by the musicians.

SOTA text embedding models are often capable of encoding term
contexts into their representations, i.e., terms can be augmented
with suitable prompts to specify the context of use. Such contextual-
izing information ideally enables the model to learn domain-specific
similarities and relations that might not be apparent in other situ-
ations, such as metaphorical usage of terms related to movement,
weight, and flow, or words borrowed from other sensory modalities
like sweet, rough, and warm, which are common in our ground
truth data. In this experiment, we augment the 150 terms with a
common context prompt. In the original Con Espressione game, lis-
teners were asked to ‘please think of words (if possible, adjectives)
that best describe the character of each performance to you.’. We
translate this to the prompt: ’I listen to a solo piano performance
of a classical piece of music and I’d describe the character of the
performance as TERM’ and recompute all embeddings for four test
models.

Figure 2 shows the distributions of pairwise similarities for con-
text prompts. For all tested models, the prompts led to higher pair-
wise similarities. To test the similarity structure of these context
embeddings, we again compute the relative change in aP@k for
four models after adding contexts. Figure 4 (left) shows this relative
change, i.e., the aP@k of the embeddings with context divided by
the aP@k of those without. Not all models react positively context
information, GTE and CLAP stay largely the same or get worse.

Ref P1 in P2: 0.62 P2 in P1: 0.65

Model Overlap v P1 Overlap v P2

ADA 0.55 0.58 0.48 0.43
CLAP 0.52 0.51 0.47 0.46
GTE 0.59 0.59 0.53 0.52
BGE 0.51 0.53 0.53 0.48
GT 0.66 0.70 0.66 0.70
RB 0.39 0.41 0.40 0.39
Table 2: Overlap and distance ratios.

The other two models see performance increases of 20 % and more,
which in the case of ADA pushes the model higher than the expert
reference (see Figure 3, see section 4.1).

4.5 Clustering and Piles
The aP@k compares neighborhoods of the same size, however, the
experts’ groups of piles are not homogeneous in size and number.
On the other hand, the piles do provide a complete clustering of the
adjectival space which can be compared against automatic cluster-
ings (see Figure 5 for an illustration of the clustering provided by
pile group two in a the ground truth space). In this last experiment,
we compute k-means clusterings in several embedding spaces and
compare them against the two groups of piles by means of average
maximal overlap coefficients.

Table 2 shows the results. All k-means clusterings are computed
with k=22, the average of the pile group sizes (|𝑃1| = 25, |𝑃2| = 19).
Average maximal overlap coefficients are not symmetrical, hence
we report two values per setup. The top row reports two values
for reference: the average maximal overlap of pile group one with
pile group two ("P1 in P2"), and vice versa ("P2 in P1"). K-means
clusterings are computed for six models, four embedding models,
the ground truth model, and a random baseline consisting of a
100-dimensional Gaussian. The two columns below "Overlap v P1"
average maximal overlap coefficients for group one in k-means
clusters (left) and k-means clusters in group one (right). The next
two columns marked "Overlap v P2" report the same values for
group two.

Note that smaller sets of clusters generally reach a higher average
maximal overlap due to larger clusters (P2 in P1 > P1 in P2, |𝑃1| = 25,
|𝑃2| = 19). None of the embedding models reach the agreement
between the two groups of piles, however, they clearly outperform
the random baseline. The ground truth reaches higher overlap
values with both groups than in between the groups, which is to
be expected, as it was derived from the performance annotations
and the two groups of piles.

5 DISCUSSION AND CONCLUSION
Specialized datasets created by domain experts like the CED and
its sorted pile groups usually serve a primary reductionist research
purpose: the identification and description of dimensions, cate-
gories, and relations in perceptual-linguistic spaces. However, they
also allow for a quantitative glimpse into the similarity structures
of these spaces: similarity structures which are hypothesized to
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be recovered by SOTA term embedding models. In a series of ex-
periments, we address this hypothesis for a presumably highly
specialized type of adjectival space, that of characterizations of
expressive performance of Western classical solo piano works.

Our results show that domain-specific semantic similarity struc-
tures are indeed represented in the embedding spaces — to a degree.
The tested models span the full range from near the random base-
line to near human agreement. General-purpose models perform
better than domain-adapted ones, running counter to our initial
assumption.

In our experiments, cross-modal audio embeddings of the per-
formance recordings fail to exhibit the same similarity structure
as text embeddings. Hubness reduction helps the similarity corre-
spondence universally, albeit only for a specific and small segment
of neighborhoods. The inclusion of contextualizing prompts affects
the models differently, with the best models receiving a clear boost
in quality. Overlap statistics show that all embedding space clusters
show less correspondence with the expert sortings than those show
among themselves.

The groups of piles are used as a reference for correspondence
in similarity structures throughout as they represent a rough esti-
mate of inter-rater agreement to be expected. They are however the
largest source of uncertainty. We do not know how likely similar
groups of piles are or have other means of assessing of inter-rater
agreement. Neither do we have direct similarity ratings or know
whether performance expressivity-specific similarities are indeed
notably different from general similarity. Research into dimensional
and categorical structure on music perception as discussed in sec-
tion 2 may ground the pile group similarities, however, for the
number of terms used or even the free-text CED annotations more
research is required to illuminate the robustness of this data.

To conclude, general state-of-the-art text embedding models can
show correspondence with expert annotated perceptual-linguistic
similarities that reach the experts’ inter-rater agreement while other
— even plausibly better suited domain models — fail at this task.
Future research includes the investigation of the robustness of the
annotation data as well as the extension of this approach to other
domains where fine-grained and possibly idiosyncratic adjectival
spaces are used.
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