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Abstract. We present the first version of a probabilistic linear basis
model for expressive dynamics in music. The model extends prior work
by Grachten and Widmer [7]. Contrary to the original model, this model
allows for both specifying musical knowledge, and for modeling multiple
distinct performances of the same piece. We show that in its current, min-
imalist form, the new model performs on a par with the original model in
terms of predictive accuracy. Furthermore, a novel set of basis-functions
is evaluated, to model dynamics annotations such as (de)crescendo in a
context-aware manner.
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1 Introduction and related work

Expressive interpretation of notated classical piano music is a complex human
skill, that involves extensive practice, and substantial tacit knowledge. It is gener-
ally agreed that expressive interpretations serves two main communicative func-
tions. Firstly, musicians tend to shape their performance to communicate musical
structure to the listener. The second important function of musical expression
is to communicate affect [9,4]. Musicians can play music in a way that amplifies
a particular mood that may be inherent in the musical content, but they may
also choose to impose their own emotional intentions in the music they perform.
Extensive overviews of research on the production, perception, and modeling of
musical expression are given in [6].

Computational models have been proposed for a variety of factors that shape
musical expression. These models may serve mainly analytical purposes [13,14],
mainly predictive purposes [12], or both [8,4,7]. Other models attempt to pro-
vide intuitive control over musical expression [3,2]. Of the works mentioned,
both [12] and [8] are of special relevance to the work presented here, since they
also present probabilistic approaches to modeling musical expression. Teramura
et al. [12] use Gaussian processes (GP), a probabilistic kernel method, to render
music performances. The equivalent kernel in GP uses gaussian basis functions
of the input data, instead of basis functions that model specific characteristics
of dynamic performances. For this reason, it seems better suited for prediction,
than for analysis of the influence of particular score aspects on musical expres-
sion. Grindlay and Helmbold’s ESP model [8] consists in a hierarchical hidden



2

Markov model (HHMM) to model the distribution between score features and
expressive parameters (tempo). An interesting contribution in their work is the
use of an “entropic prior”, that favors low entropy distributions over the model
parameters, which supposedly results in more interpretable models. Furthermore,
they compare model parameters trained on performances of different performers
to characterize differences between performers.

Most computational models focus on implicit factors that influence expres-
sion like those discussed above. However, to aid interpretation, composers of-
ten annotate their music with explicit directives for the dynamics, tempo, and
articulation of the performance. Subsequently, editors may also add such anno-
tations, mostly for didactic purposes, rather than to express artistic intentions.
To date, few modeling approaches attempt to give an account of musical ex-
pression that incorporates directives explicitly written in the score. Repp con-
siders crescendo and decrescendo signs in a study of dynamics in the opening
of a Chopin Etude [11], but this constitutes a case study rather than a generic
model. Grachten and Widmer [7] propose a computational model for musical ex-
pression that models dynamics annotations (such as (de)crescendo, piano, forte,
sforzato) explicitly as basis functions, which are combined linearly to model ex-
pressive dynamics. Their approach using least squares (LS) regression, although
not explicitly formulated in a probabilistic way, is equivalent to a maximum
likelihood estimation of the parameters, assuming the note intensity values are
normally distributed, given the musical score and the model parameters [1].

In this paper, we propose a probabilistic formulation of the model by Grachten
and Widmer, where the parameters are estimated using a maximum a posteriori
approach. This formulation makes the model much more flexible. On the one
hand, it is possible to incorporate prior knowledge in the form of prior distribu-
tions over the model parameters. On the other hand, this formulation alleviates
the restrictive assumption of the targets being normally distributed. This is an
important step in order to model the fact that there may be multiple distinct
ways to perform music. In addition to the formulation of the Bayesian linear
basis model for music expression, we experiment with a new type of basis func-
tions to represent crescendo/decrescendo annotations, that take in to account
the context in which the annotation occurs.

The work presented should be regarded as a proof-of-concept of the proba-
bilistic extension of Grachten and Widmer’s model, rather than a final model
for musical expression. We have not yet taken full advantage of the new model
by specifying a prior information (e.g. encoding that note intensities tend to
increase during a crescendo and decrease during a decrescendo), or by using a
non-normal density function for modeling the distribution probabilities of the
note intensities. Nevertheless, we show that the new model in its simplest form
performs on a par with the original model.

Section 2 provides an explanation of the use of basis functions to represent
dynamics annotations, as well as pitch information (as in [7]). In Section 3, we
formulate the model, and describe how the parameters can be computed given
training data. Using a data set of performances of Chopin’s piano music by
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Category Examples Basis function

Constant f, p, dolce step
Gradual crescendo, diminuendo, calando ramp + step
Impulsive fz, sfz, fp impulse

Table 1. Categories of dynamics markings
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Fig. 1. Schematic view of note inten-
sities as a weighted sum f(x,w) of ba-
sis functions φ, representing dynamic
annotations
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Fig. 2. Dependency of dynamics and pitch
in Magaloff’s performances of Chopin piano
pieces reported in Section 4.1

Nikita Magaloff, we compare the predictive accuracy of the model to that of [7],
in Section 4. The results are discussed in Section 5, and conclusions and future
work follow in Section 6.

2 Basis Functions

The use of basis functions to represent dynamics annotations in musical scores
follows naturally from the fact that these annotations typically have a time range
over which they take effect, rather than a single position in time. For example,
a piano annotation specifies a constant, relatively low loudness level, that is
in effect until another such directive occurs, for example a forte (implying a
relatively high loudness level). Gradual increases and decreases of loudness are
indicated by crescendo and decrescendo, respectively. A third class of annota-
tions concerns only a single position in time (or even a single note), typically
to describe an sudden accent (e.g. sforzato). Each of these three categories of
dynamics annotations has each own basis function, which is intended to model
the effect of an annotation in a schematic way (see table 2). Figure 2 illustrates
the idea modeling loudness as a weighted sum of basis functions schematically.

The notion of basis functions is very general, and can be designed to capture
any aspect of the score. In particular, by defining basis functions that map
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score notes to various powers of their midi pitch, it is possible to capture the
effect of pitch on note intensity in the form of a polynomial pitch model [7].
Figure 2 shows a scatter plot of note intensity versus MIDI pitch, for the data
set used in Section 4, together with polynomials of different degrees to model
the relationship.

In this paper, we define a new set of basis functions, intended to differenti-
ate between gradual loudness annotations in different loudness contexts. We do
this by combining each gradual annotation with its preceding and succeeding
loudness level, for example p → crescendo → mf, or f → diminuendo → mf.

3 Bayesian linear regression

As already discussed in the introduction, in previous work [7], the estimation of
the weights w that mix the basis models was performed using a least squares
(LS) regression. In this paper we use a Bayesian approach, namely, maximum
a posteriori (MAP) estimation to compute the weights w. This can be formally
modeled as follows:

Given a musical score, represented as a list of N notes x = (x1, . . . , xN )T and
a set of K predefined basis functions φ = (ϕ1, . . . , ϕK)T , a sequence of N target
values y = (y1, . . . , yN )T (e.g. loudness) can be modeled as a linear combination
of the basis functions plus noise ϵ as

y = Φw + ϵ, (1)

where Φ is a N × K matrix with elements Φik = ϕk(xi) and w is a vector
of K weights. If we consider ϵ as a zero mean Gaussian random variable with
covariance Σ = β−1I, and assume that every sample y ∈ y is independent and
identically distributed, the conditional distribution of y given x is

p(y | x,w) =

N∏
n=1

N (yn | wTφ(xn), β
−1). (2)

Since we are not seeking to model the distribution of the input variables x,
and thus, x will always appear as a set of conditioning variables, in the rest of this
paper x will be dropped from the conditional distributions, to avoid cluttered
notation.

Using a Bayesian interpretation, we assume that the weights itself have a
prior distribution p(w) = N (w | m0,S0), where m0 and S0 are the mean and
covariance respectively. Using this prior distribution and the conditional distri-
bution of y given the weights w from Eq. (2), it follows from Bayes’ theorem
that that the posterior probability of the weights w given the targets y is also a
Gaussian distribution, i.e.

p(w | y) = N (w | mN ,SN ), (3)

where the mean and covariance are given respectively by

mN = SN (S−1
0 m0 + βΦTy) and S−1

N = S−1
0 + βΦTΦ. (4)
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As a simplification, we assume m0 = 0 and S0 = α−1I. In this case, the
posterior log-likelihood takes the form

log p(w | y) = −β

2

N∑
n=1

(yn −wTφ(xn))
2 − α

2
wTw + const. (5)

In order to maximize the posterior log-likelihood, we take the gradient with
respect to the weights, i.e.

∇ log p(w | y) = β
N∑

n=1

(yn −wTφ(xn))φ(xn)
T − αw, (6)

In this way, the weights that maximize the posterior log-likelihood are cal-
culated by solving ∇p(w | y) = 0, which results in

wB =

(
α

β
I+ΦTΦ

)−1

ΦTy. (7)

The hyper-parameters α and β can be computed using the evidence approx-
imation algorithm (also known as type 2 maximum likelihood) [1].

4 Experiments

In order to demonstrate how the model is able to account for aspects of expres-
sive dynamics, a two part experiment was conducted. Using a set of precisely
measured performances by a single professional pianist, we first evaluate the
ability of the model to explain the expressive dynamic variations using various
combinations of basis functions. Then, we test how well the model generalizes
to unseen data.

The following abbreviations are used to refer to the different sets of basis
functions: PIT is the polynomial pitch model described in [7]; DYN are the
dynamics annotations without context, as in [7]. DYNc represent the dynamics
annotations with context (see Section 2).

4.1 Data Set

We use the Magaloff corpus [5], which consists of live performances of the com-
plete Chopin piano works as played by the Russian-Georgian pianist Nikita Ma-
galoff (1912-1992). These performances were recorded in a series of concerts
in Vienna, Austria in 1989, using a Bösendorfer SE computer-controlled grand
piano [10]. The data was converted into standard MIDI format, where note in-
tensities are represented by MIDI velocity.

Magaloff was known for using manuscripts as scores, but we are uncertain
as to the exact version. In this work, the dynamics markings are obtained by
optical music recognition (OMR) from the scanned musical scores from the Henle
Urtext Edition. Although the OMR program used (SharpEye) does transcribe
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LS Bayesian
r R2 r R2

Basis ave. std. ave. std ave. std ave. std

DYN 0.516 0.110 0.275 0.107 0.516 0.110 0.276 0.107
DYNc 0.576 0.095 0.339 0.107 0.576 0.095 0.339 0.107
PIT 0.416 0.033 0.174 0.028 0.416 0.034 0.174 0.028
DYN+PIT 0.622 0.096 0.393 0.112 0.621 0.096 0.393 0.113
DYNc + PIT 0.675 0.092 0.462 0.118 0.675 0.092 0.461 0.118

Table 2. Goodness-of-fit of the model over performances of four Chopin piano pieces.
See section 4 for abbreviations

dynamics annotations, the transcriptions are not always reliable (false negatives,
incorrect positioning). At the time of writing, the dynamics annotations have
been manually corrected for four pieces: Op. 15 No. 1, Op. 27 No. 2 (Nocturnes),
Op. 28 No.17 (Prelude), and Op. 52 (Ballade).

4.2 Goodness-of-fit of the dynamic representation

For the first part of the experiment, we use the four corrected pieces from the Ma-
galoff corpus, to evaluate the ability of the model to explain expressive dynamic
variation in musical performances. As a quantifier of the goodness of fit, we use
r, the Pearson correlation coefficient and R2, the coefficient of determination.
The correlation coefficient denotes how strongly the observed dynamics and the
dynamics proposed by the model correlate, while R2 expresses the proportion
of variance explained by the model. Table 2 shows a comparison of the observed
expressive dynamics and the dynamics proposed by the different models and sets
of basis functions. We show the average and standard deviation of both r and
R2 for the LS approximation, as well as for the new Bayesian approach.

4.3 Predictive accuracy

To evaluate the accuracy of the predictions of the trained model, a leave-one-out
cross validation over a total of 151 pieces was performed. The model was trained
with 150 pieces, and then it was used to predict the dynamics of the remaining
piece. Table 3 shows the accuracy of the model in this scenario using again as
a quality measures the Pearson correlation coefficient r and the coefficient of
determination R2 for both the LS and the Bayesian regressions and the different
sets of basis functions.

5 Discussion

The results for both goodness-of-fit and predictive accuracy show that the Bayesian
approach performs on a par with the LS regression. This is an expected result,
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LS Bayesian
r R2 r R2

Basis ave. std. ave. std ave. std ave. std

DYN 0.181 0.204 0.073 0.086 0.181 0.204 0.073 0.086
DYNc 0.185 0.198 0.072 0.083 0.185 0.198 0.072 0.083
PIT 0.381 0.145 0.166 0.096 0.381 0.145 0.166 0.096
DYN+PIT 0.431 0.145 0.207 0.113 0.431 0.145 0.207 0.113
DYNc + PIT 0.420 0.149 0.198 0.113 0.419 0.150 0.198 0.113

Table 3. Predictive accuracy in a leave-one-out scenario over performances of 151
Chopin piano pieces. See section 4 for abbreviations

since we assumed a zero mean Gaussian distribution for the prior probabilities
over the weights. During the realization of the experiments, we noted that the
hyper parameter α (the inverse precision of p(w)) tends to be very small, sug-
gesting that the prior probability is non-informative, and therefore assuming that
the priors have a centered unimodal distribution could be an oversimplification.

We can also see that the use of a more sophisticated basis functions for mod-
eling the dynamics DYNc do not increase the predictive accuracy. This suggests
that there may not be enough training data to significantly represent all pos-
sible basis functions (ca. 2500). In case of goodness of fit, the over-modeling
provided by the basis functions DINc, presents an increase of ca. 12% in the
correlation coefficient, and almost 22% more explained variance when compared
to the more general basis DYN. Nevertheless this does not reflect in the joint
basis DYNc + PIT and DYN+ PIT , where the results are almost identical.

6 Conclusion and future work

In this paper, a fully probabilistic Bayesian approach for analyzing and predict-
ing musical expression using a linear basis model was presented and evaluated.
The results show that in its current form, this approach performs almost iden-
tically to a least squares regression, since under the current assumption of a
zero-mean gaussian prior distribution of the weights, the prior is not informa-
tive. Nevertheless, the probabilistic formulation has some strong advantages over
a least squares approach. In particular, it can take advantage of of musical knowl-
edge as prior information, and it can account for multiple distinct performances
of a musical piece, for instance by using mixtures of gaussians rather than a
single gaussian to represent the distribution of model parameters.

A newly proposed set of basis functions that model gradual dynamics an-
notations in a context-aware fashion, although musically justifiable, failed to
improve predictive accuracy. An explanation for this is that the context-aware
representation of the annotations creates a higher-dimensional, and thus less
densely populated data space, in which it is harder to generalize to unseen data.

An obvious next step is to model both the noise and the prior probabilities of
the weights by other than Gaussian distributions, for example Gaussian Mixture
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Models. Combining this approach with a predictive distribution, it would be
possible to render distinct musically acceptable performances of the same piece,
rather than a single most likely performance.
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